RESTEasy JAX-RS

RESTFul Web Services for Java

3.0.9.Final

[l (=] = Vo7 < T iX

R @ T YT PP 1
N o =Y B = 3
3. Installation/ConfigUIationoiiiiii i e 5
3.1. Upgrading Resteasy Within JBOSS AS 7ccouuiiiiiiiiiiiiii et 5

3.2. Upgrading Resteasy Within JBoSS EAP 6.1coovvviiiiiiiiiieecii e, 5

3.3. Upgrading Resteasy Within Wildflyccoooiiiiii 5

3.4. Configuring in JBoss AS 7, EAP, and Wildflyccooiiiiiiin e, 5
3.4.1. Resteasy Modules in AS7, EAPG.1, Wildflyccooiiiiiiiiiiiieeen, 6

3.5. Standalone Resteasy in Serviet 3.0 CONtAINEIScovvvviiiiiiieiii e 7

3.6. Standalone Resteasy in Older Servliet CONtAINErScoeveiveiiiieiiiieeiiec e 8

3.7. Configuration SWItCHESciiiiiii e 9

3.8. Javax.WS.rs.COre. APPIICALIONccoevunieiiiii et 11

3.9. RESTEasy as a ServletContextLIStENEroevviiiiiii e 13
3.10. RESTEaSy as a Servlet Filter ..o 14
3.11. RESTEASYLOGUING «.civtieiiiiiiiieiii et e e e e e e e e e e e e e et e e e e e st e e et e e e e eeaneeaen 15

4. Using @Path and @GET, @POST, €IC. ..iiuuiiiiiiiiiiei e e 17
4.1. @Path and regular expression MapPiNgScccuveiiiieiiiie e eaen 18

B @PAtNPArAM oo 21
5.1. Advanced @PathParam and Regular EXPressionsccccccoeveviineiiineciiniecieeennnn, 22

5.2. @PathParam and PathSegmentcooiiiiiiiiiii e 22

ST L@ U T=T YA == 1= o P 25
VARG L (2T o [T =T = o o TR 27
T T o1 g Yo T =0 1L o = 29
S TR0 I | Q1= = o = PP 29

8.2. Atom links in the resource representationscccoeveiieeiiiieiiie e 29
8.2.1. CONFIQUIALION .ouuiiiiiii e e 29

8.2.2. Your first iNks INJECTEAccovuiiiiiiiii e 29

8.2.3. Customising how the Atom links are serialisedcccooveveiiiieiiinneinnnen, 32

8.2.4. Specifying which JAX-RS methods are tied to which resources 32

8.2.5. Specifying path parameter values for URI templatesccccoeevvevennennnnn. 33

8.2.6. SECUIMNG ENLLIES ..uuiiiiieii e e e e e e e e an s 36

8.2.7. Extending the UEL CONEXLc.uuiiiiiiiiiiiiiii e 36

8.2.8. RESOUICE fACAUESovvviiiiii i e 38

L I @ LY =N D= = 1 o 41
MO @ L@ e Yo) AT =T =T o KR 43
@] o Y a1 =T = o T 45
I (@) =T Y o TR 47
13, @DEFAUITVAIUEeeieieee e e aas 51
14. @ENcoded and NCOAING ..oouuiiiiiieiiii e e e e e e e e e et e et e e et e e e e e 53
T (@21 @0 4} () SN 55
16. JAX-RS Resource Locators and Sub RESOUICESccuuieviiiiiieiiiiiiieeeiinie e eeneens 57
17. JAX-RS Content Negotiationcoouuuiiiiiiiiieiiii e e e 61
17.1. URL-based NeQOLIAtiONcciuuiiiiiiiiii e e e e e e e e et e e e e eaaas 63

RESTEasy JAX-RS

17.2. Query String Parameter-based negotiationcccoovveiiiineeiiiiine e, 64

18. Content Marshalling/ProVidersccccuiiiiiii e e 65
18.1. Default Providers and default JAX-RS Content Marshallingcc.c.ocoeviiienennnn, 65
18.2. Content Marshalling with @Provider ClasSescccovvviiiiiiiiiiiiiecie e, 65
18.3. Providers ULility Classooooiiuiiiiiiiie e 66
18.4. Configuring Document Marshallingccocooiiiiiiiiiii e, 68

19, JAXB PrOVIAEIS ettt ettt e et e e e e e 71
19.1. JAXB DECOFAIONS ..ceuetiieieiieie ettt ettt ettt e e e e e e e e e e ennes 72
19.2. Pluggable JAXBContext's with ContextResoIVerscccccoevvviiiiiiineiiiiieeeen, 73
19.3. JAXB + XML PIrOVIET ..vuiiiiiiiiiii et e e e e e e e e e et e e e e e et e e e et e e eaeeeanes 74
19.3.1. @XmlIHeader and @Stylesheetc.ovvviiiiiiiiiiii e 74

19.4. JAXB + JSON PrOVIAET ...cieiiiieiiiiieee sttt e et e et eeeae s 76
19.5. JAXB + FastinfoSet ProVIAEIccouuuiiiiiiiiie ettt 81
19.6. Arrays and Collections of JAXB ObJECEScccuviiiiiiiiiiiiii e, 81
19.6.1. JSON and JAXB ColleCtONS/AITAYScccuuuiieiiiiiieeiiie e 84

19.7. Maps Of JAXB ODJECLS ..uiiviiiiiiicii et 85
19.7.1. JSON and JAXB MAPS ...vuuneiertineieiiiie ettt ettt e et e e e e e 87

19.7.2. Possible Problems with Jettison Providercccoovveiiiiiiieiiiiineecie, 88

19.8. Interfaces, Abstract Classes, and JAXBcoioiiiiiiieiiiiinieiii e 89
19.9. Configurating JAXB Marshallingcccoiiiiiiiiii e 89

20. ReSteasy AtOM SUPPOIT ...ttt en s 91
20.1. Resteasy Atom APl and Providerc.coiiiiiiiiiiiiie e 91
20.2. Using JAXB with the AtOm ProVidercoooiiiiiiiiiiiii e 92

21. JSON SUpPPOrt Via JACKSONiiiii i e e e e e 95
21.1. Using Jackson 1.9.x Outside of JBOSS ASToiiiiiiiiiiiiiiiieeii e 95
21.2. Using Jackson 1.9.x Inside Of JBOSS AS7eevuiiiiiiieiii e e e e e e 95
21.3. Using Jackson 2.2.x Outside of JBOSS ASToiiiiiiiiiiiiiiiieeeii e 95
21.4. Using Jackson 2.2.x Inside Of JBOSS AS7cvvuiiiiiiieiiieeii e e e e e 96
21.5. Additional Resteasy SPECIICSoiveuuiiiiiiiie e 96
21.6. Possible Conflict With JAXB PrOVIAEruiiiiiiiiieiiiiiie e 98
21.7. JSONP SUPPOIT ettt ettt et e e e e e 98
21.8. JACKSON JSON DECOIALON ..evvuiiiiiiiiieeeiii ettt ettt e et e et e e e e e e et e aeaeenns 98

22. JSON Support via Java EE 7 JSON-P APl ..o 101
b2 T/ 101N o = U Al o 0 A4 T =Y P 103
23.1. Input with MUIIPArt/MIXedooiiiiiiei e 103
23.2. java.util.List with multipart datacccooiiiiiiiiiii e 105
23.3. Input with multipart/form-datacoeeuiiiiiiiii e 105
23.4. java.util.Map with multipart/form-dataccooiiiiiiiiin e, 106
23.5. Input with multipart/related ... 106
23.6. Output With MUILIPANTcovnei e 107
23.7. Multipart Output with java.UtilLLiStccoeuuiiiiii e 108
23.8. Output with multipart/form-datacccoooviiiiii e, 109
23.9. Multipart FormData Output with java.util.Mapccccooeeiiiiiiiii e 110
23.10. Output with multipart/relatedcoiiiiiii e 110

24,
25.
26.
27.

28.
29.
30.
31.
32.

33.

34.
35.

36.

37.
38.
39.

23.11. @MultipartForm and POJOSviiiiiiiieee e e e 111

23.12. XML-binary Optimized Packaging (XOp)c.ooeveiiiiiiieiieeeie e, 113
23.13. Note about multipart parsing and working with other frameworks 115
23.14. Overwriting the default fallback content type for multipart messages 115
23.15. Overwriting the content type for multipart messagesccoevveveeiiiieeiiiinnenens 116
23.16. Overwriting the default fallback charset for multipart messages 116
27N/ = 0 1Y T = 119
String marshalling for String based @*Paramccooovviiiiiii i 121
Responses using javax.WsS.rS.COre.RESPONSEociiiuiieiiiii et 123
EXception Handling ... 125
27.1. EXCEPLON MEPPETS «oouuiiiiiiie ettt ettt et e e et e e e e 125
27.2. Resteasy Built-in Internally-Thrown EXCEPLIONScccovviiiiiiiiiiiiiiieeciieeee e, 126
27.3. Overriding Resteasy Builtin EXCEPLIONSooovviiiiiiiiiiiieieiii e 127
Configuring Individual JAX-RS Resource Beanscccooeeiveviiiiiiiieiin e 129
GZIP CompresSion/DECOMPIESSION ...uuuiiiiitiieeiiiie et e et e et et et e e e e eeaanns 131
L0] 3 PPN 133
Content-Range SUPPOIT ..oouiiieii e et 135
Resteasy Caching FEAtUIESccuiiiiiiiii e e 137
32.1. @Cache and @NoCache ANNOLALIONSivviiriiiiiii e 137
32.2. Client "Browser" CAChEiiiiiiiiiiiiiii et 138
32.3. Local Server-Side Response Cachec..covviiiiiiiiiiiiiiiiiei e 139
FIlters and INTEICEPIONS ..iivuiiii i e e e e e e e eaes 141
33.1. Server Side FIlErS ... 141
33.2. ClENt Side FIlEEIS ..iieiiiiieiii e e e e e eaeans 142
33.3. Reader and Wrter INtErCEPLOISuuiiiiiiii ettt 142
33.4. Per Resource Method Filters and INterceptorscoooeeeviiiieiiin i, 143
IS B S ©] ([T] o o TP UPPPTPRPPPRN 143
Asynchronous HTTP ReqQUESt ProCeSSING ...cccuuiiiiuiiiiiiiiiiieeiiieeeiieeie e eeieeeaneeeees 145
ASYNCAIONOUS JOD SEIVICE .ouuiiiiiii i e 147
35.1. USING ASYNC JODS ...uiiiiiiiiii e e e e e e e a e 147
35.2. Oneway: Fire and FOIQELuuiiiiiiiieeeii e 148
35.3. Setup and Configurationooeiiiiiiiiii e 148
Embedded CONTAINEIS ..o e e e e e e e e eanas 151
GG I U oo 1= 4 (0 PRI 151
36.2. SUN JDK HTTP SEIVET ..ottt e e ees 153
36.3. TIWS Embeddable Servlet CONtAINErcvevveiiiiiiiiiiieee e 154
LG B LY 1 PP 155
Server-side MOCK FrameWoOrk ... 157
Securing JAX-RS and RESTEASYuuiiiiiiiiiiiiii ettt 159
OAuth 2.0 and Resteasy SKeleton KEYccoviiiiiiiiiiiii e 163
39.1. System REQUIFEMENTSciiiiiiiiiii e e e e e 164
39.2. Generate the Security Domain Key Pairccoooiiiiiiiiiiieiec e, 164
39.3. Setting up the AULN SEIVET ..o e 164
39.3.1. Setting up your Security DOMaiNc.ccuiveiiiiiiiiieiiiircce e, 164

RESTEasy JAX-RS

39.3.2. Auth Server Config Filecoiiiiiiiiii e 165

39.3.3. Set Up WED.XMI ..uei 167

39.3.4. Set up JDOSS-WED.XMI ...uenii 167

39.3.5. Set up jboss-deployment-structure. Xmlcoooeeiiiiiiiiiiiniiineeeee 167

39.3.6. Tweak Yyour 10giN PAGE ...ccoutniiiiiiiee et 168

39.4. Setting Up An APP fOr SSO ..ovniiiii e 168
39.4.1. SSO €ONfig filE ...cveeeeieie e 168

39.4.2. Set Up WED.XMI ... 170

39.4.3. Set up JDOSS-WED.XMI ...uuniii 170

39.4.4. Set up jboss-deployment-structure. Xmlcoooeviiiiiiiiiiiniiiiieeeee 170

39.5. Bearer TOKEN ONIY SEIUP ...cciiiiiiiiiii e 170
39.5.1. Bearer token auth config filecooooiiiiiiiii 170

39.5.2. Set Up WED.XIMI .ooiiiii e 171

39.5.3. Set up JbOSS-WED.XMI ... 171

39.5.4. Set up jboss-deployment-structure. Xmlccooeeiiiiiiiiiiiniiin e 171

39.6. Obtaining an access token programmatically.ccccoeeiiiiiiiiiiiiieecin e 172
39.7. Access remote services securely in a secure web sessionccooeviiiein, 173
39.8. Check Out the OAUth2 EXample!ccoiiiiiiii e 174
39.9. Auth Server ACtION URLSoouiiiii i e e e 174

40. AUTNENTICALION oiiiii et e et e e e et e e e e et e e e eetaaeeaees 175
o I I © 7AW 1. [oo 0 I 07 P 175
40.1.1. Authenticating with OAUth 1.0acccoeiiiiiiii e, 175

40.1.2. AccesSing ProteCted rESOUICESceivururieiiiiiieeeeiii e et e e et e eeeei e eeens 176

40.1.3. Implementing an OAUthProvidercccoovviiiiiiiiii e, 177

41. JSON Web Signature and Encryption (JOSE-JWT)oviiiiiiiiiiiiiiiieieii e, 179
41.1. JISON Web Signature (JWS) ..o e 179
41.2. JISON Web ENCryption (JWE)coouuuiiiiiiiieiei et 179

42. Doseta Digital Signature Framework ..o 183
42.1. MAVEN SEIHINGS ...eieeiiieiiii ettt e e et e e e et e e e 185
42.2. SIGNING APl Lo 185
42.2.1. @SIgned anNOtatiONcccouuiiiinieiiie e e 186

42.3. Signature Verification APl 187
42.3.1. Annotation-based verificationcccooiiiiiiiiiiin 188

42.4. Managing Keys via a KEYREPOSIHOIYcccuiiiiiiiiiiiiiiie e e e 189
42.4.1. Create @ KEYSTIOMEcoouuiiieiieiie ettt 189

42.4.2. Configure Restreasy to use the KeyRepoSsitorycoocevveviiiiiinieninnnnns 189

42.4.3. Using DNS to Discover PUblic KeYScccoiiiiiiiiiiiiiiiiicc e 191

43. Body Encryption and Signing via SMIMEcccooiiiiiiiii e 193
43.1. MAVEN SEHINGS ...eieeiiieeiiii ettt ettt e et e e e 193
43.2. Message Body ENCIYPLioNcc.iiiiiiiiiiiiii e e e e e 193
43.3. MeSsage BOdY SIgNMINGcoeeurniiiiiieeiiii e e e e e e e eee 195
43.4. application/pPKCS7-SIGNALUIEiciuueeiiieiie e e e e e e e e e e e e eens 197

A4, EJIB INTEGTALION iiiitii ittt ettt ettt ettt et e e e e e eaa e 199
F TS o] g g Yo T LN (=T 1 = Lo PN 201

Vi

46.

47.
48.

49.

50.

51.

52.
53.
54.
55.
56.

(61D IR [N (=T o | =1 { o] o H TP TP PP PPPPTTRPPPIN 205
46.1. Using CDI beans as JAX-RS COMPONENEScevvviiiiiiiiiiieeii e e e e e 205
46.2. DEFAUIL SCOPES ...ttt et 205
46.3. Configuration within JBoss 6 M4 and Highercccooiiiiiiiiiin i 206
46.4. Configuration with different distributions ... 206

SY=T=La (T T L (= To | =1 1o 1o P 207

GUICE 3.0 INTEGIALION .iiiiti i ettt e e et e e e e e eaa e e 209
48.1. REQUESTE SCOPE ..iuiiiiiiiitiit ittt e 210
48.2. BInding JAX-RS ULIHIESiiiiiiieiii e 211
R T T O] a1 iTo [0 g o] = Vo = T 211
48.4. CUStOM INJECLOr CrEALIONuuiiiiii ettt et e eees 212

REStEASY CHENT APl L 215
49.1. JAX-RS 2.0 ClENt APl ..ot 215
49.2. Resteasy Proxy FrameWOrKccociuiiiiiiiiiiie e e e 215
49.3. Apache HTTP Client 4.x and other backendsccccoooviiiiiniiiiii e, 218

F N 1 1= o | PSPPI 223
50.1. Generated JavaSCript AP ... 223

50.1.1. JavaScript APl SEIVIELciieiii i 223
50.1.2. JavaSCript APl USAQE ...ccouuiiiiiiiieeiiii ettt 224
50.1.3. WOrk With @FOIM ...eeeiii e aas 226
50.1.4. MIME types and unmarshalling.cccoovieiiiiiiiiiiii e, 227
50.1.5. MIME types and marshalling.ccooouiiiiiiiiiiiin e, 229
50.2. Using the JavaScript API to build AJAX QUETIESuviiiiiiiiieiiieee e 230
50.2.1. The REST ODJECL .iivvuiieiiiiii et 230
50.2.2. The REST.ReqQUESE ClasSoiiiiiiiiiiiiiiieei e 231
50.3. CaChing FEALUIESciiiiiiiii e e e e aeas 232

RV 2= 11T =14 o] o PP 233
L3 % Vo F= L o] T (= o] 11T ISt 234
51.2. Bean Validation 1.1cooiiiiiiiiiii et 238
51.3. Bean Validation 1.0cccuuiiiiiiiiiiiiiine e 239
51.4. Validation ServiCe ProVIAEISoiiiiiiiiiiiiiiee e 240

Maven and RESTEASYciuuiiiiiiieiiieei e e e e e e e e e e e e et e et e e e e aan s 245

JBOSS AS 5.X INTEGIALION ...ciiiiiiiiiii e 249

JBOSS AS B/7 INTEGIAtiON ...cvviiiiiieii e e e e aaas 251

DoCUMENTALION SUPPOIT oeeeieiiiii ettt et e e e e 253

Migration from Older VEISIONSiiiiiiiiiiiii e e 255
56.1. Migrating from 3.0.7 10 3.0.9uiiiiiii i 255
56.2. Migrating from 3.0.6 10 3.0.7iiiiiiiiiiiii e 255
56.3. Migrating from 3.0 10 3.0.4 ... 255
56.4. Migrating from 3.0-beta-6 and 3.0-TC-1ccciiiiiiiiiiii e e 255
56.5. Migrating from 3.0-beta-5 and 3.0-beta-6ccoooviiiiiiiiiiii 256
56.6. Migrating from 3.0-beta-4 and 3.0-beta-5ccooieviiiiiii i 256
56.7. Migrating from 3.0-beta-2 and 3.0-beta-4ccooveiiiiiiiiiiiii e 256
56.8. Migrating from 3.0-beta-1 and 3.0-beta-2ccooeeiiiiiii i 257

Vii

RESTEasy JAX-RS

56.9. Migrating from 2.X t0 3.0-beta-1oooiiiiiiiii 257
56.10. Migrating from 2.3.2 10 2.3.3 ... iiiiiiiiii i 257
56.11. Migrating from 2.3.0 10 2.3.1 .oiouuuiiiiiiii e 258
56.12. Migrating from 2.2.X 10 2.3ciiiiiiii i e 258
56.13. Migrating from 2.2.0 10 2.2.1 ..oouuiiiiiiii et 258
56.14. Migrating from 2.1.X 10 2.2ciuuiiiii e 258
56.15. Migrating from 2.0.X 10 2.1 ...eeuuniiiiii e 259
56.16. Migrating from 1.2.X t0 2.0ccuuiiiiiiiiiii e 259
56.17. Migrating from 1.2.GA 10 1.2.1.GA ... 259
56.18. Migrating from 1.1 10 1.2iiiuiiiii i e 259
57. BOOKS YOU Can REAUccuuiiiiiiiiiiiiii et e et e a e e eens 261

viii

Preface

Commercial development support, production support and training for RESTEasy JAX-RS is
available through JBoss, a division of Red Hat Inc. (see http://www.jboss.com/).

In some of the example listings, what is meant to be displayed on one line does not fit inside the
available page width. These lines have been broken up. A '\ at the end of a line means that a
break has been introduced to fit in the page, with the following lines indented. So:

Let's pretend to have an extrenely \
long line that \

does not fit

This one is short

Is really:

Let's pretend to have an extrenely long |line that does not fit
This one is short

Chapter 1.

Chapter 1. Overview

JAX-RS, JSR-311, is a new JCP specification that provides a Java API for RESTful Web Services
over the HTTP protocol. Resteasy is an portable implementation of this specification which can run
in any Servlet container. Tighter integration with JBoss Application Server is also available to make
the user experience nicer in that environment. While JAX-RS is only a server-side specification,
Resteasy has innovated to bring JAX-RS to the client through the RESTEasy JAX-RS Client
Framework. This client-side framework allows you to map outgoing HTTP requests to remote
servers using JAX-RS annotations and interface proxies.

JAX-RS implementation

Portable to any app-server/Tomcat that runs on JDK 5 or higher

Embeddable server implementation for junit testing

EJB and Spring integration

Client framework to make writing HTTP clients easy (JAX-RS only define server bindings)

Chapter 2.

Chapter 2. License

RESTEasy is distributed under the ASL 2.0 license. It does not distribute any thirdparty libraries
that are GPL. It does ship thirdparty libraries licensed under Apache ASL 2.0 and LGPL.

Chapter 3.

Chapter 3. Installation/
Configuration

RESTEasy is installed and configured in different ways depending on which environment you
are running in. If you are running in JBoss AS 6-M4 (milestone 4) or higher, resteasy is already
bundled and integrated completely so there is very little you have to do. If you are running in a
different distribution, there is some manual installation and configuration you will have to do.

3.1. Upgrading Resteasy Within JBoss AS 7

Resteasy is bundled with JBoss AS 7. You will likely have the need to upgrade Resteasy in AS7.
The Resteasy distribution comes with a zip file called resteasy-jboss-modules-3.0.9.Final.zip.
Unzip this file while with the modules/ directory of the JBoss AS7 distribution. This will overwrite
some of the existing files there.

3.2. Upgrading Resteasy Within JBoss EAP 6.1

Resteasy is bundled with JBoss EAP 6.1. You will likely have the need to upgrade Resteasy
in JBoss EAP 6.1. The Resteasy distribution comes with a zip file called resteasy-jboss-
modules-3.0.9.Final.zip. Unzip this file while with the modules/system/layers/base/ directory of the
JBoss EAP 6.1 distribution. This will overwrite some of the existing files there.

3.3. Upgrading Resteasy Within Wildfly

Resteasy is bundled with Wildfly. You will likely have the need to upgrade Resteasy in Wildfly.
The Resteasy distribution comes with a zip file called resteasy-jboss-modules-wf8-3.0.9.Final.zip.
Unzip this file while with the modules/system/layers/base/ directory of the Wildfly distribution. This
will overwrite some of the existing files there.

3.4. Configuring in JBoss AS 7, EAP, and Wildfly

RESTEasy is bundled with JBoss/Wildfly and completely integrated as per the requirements of
Java EE 6. First you must at least provide an empty web.xml file. You can of course deploy any
custom servlet, filter or security constraint you want to within your web.xml, but the least amount
of work is to create an empty web.xml file. Also, resteasy context-params are available if you want
to tweak turn on/off any specific resteasy feature.

<web- app version="3.0" xm ns="http://java.sun.com xm /ns/javaee"
xm ns: xsi ="http://ww. wW3. org/ 2001/ XM_Schema- i nst ance"

Chapter 3. Installation/Confi...

xsi : schemaLocati on="http://java. sun. coni xm /ns/javaee http://
java. sun. conf xm / ns/ j avaee/ web- app_3_0. xsd" >
</ web- app>

Since we're not using a jax-rs servlet mapping, we must define an Application class that is
annotated with the @ApplicationPath annotation. If you return any empty set for by classes and
singletons, your WAR will be scanned for JAX-RS annotation resource and provider classes.

i mport javax.ws.rs. ApplicationPath;
i nport javax.ws.rs.core. Application;

@\ppl i cati onPat h("/root - path")

public class M/Application extends Application
{

}

The Resteasy distribution has ported the "Restful Java" O'Reilly workbook examples to AS7. You
can find these under the directory examples/oreilly-workbook-as?7.

3.4.1. Resteasy Modules in AS7, EAP6.1, Wildfly

Resteasy and JAX-RS are automically loaded into your deployment's classpath, if and only if you
are deploying a JAX-RS Application. If you only want to use the client library, you will have to create
a dependency for it within your deployment. Also, only some resteasy features are automatically
loaded. To bring in these libraries, you'll have to create a jboss-deployment-structure.xml file within
your WEB-INF directory of your WAR file. Here's an example:

<j boss- depl oynent - struct ure>
<depl oynent >
<dependenci es>
<nodul e nane="org. | boss. resteasy. resteasy-yanl - provi der"
servi ces="inport"/>
</ dependenci es>
</ depl oynent >
</ j boss- depl oynment - st ruct ur e>

Standalone Resteasy in Servlet 3.0 Containers

The servi ces attribute must be set to import for modules that have default providers that must
be registered. The following table specifies which modules are loaded by default when JAX-RS
services are deployed and which aren't.

Table 3.1.

Module Name Loaded by Default Description

org.jposs.resteasy.resteasy- | yes Core resteasy libraries for

jaxrs server and client. You will
need to include this in your
deployment if you are only
using JAX-RS client

org.jposs.resteasy.resteasy- | yes Resteasy CDI integration

cdi

org.jposs.resteasy.resteasy- | yes XML JAXB integration.

jaxb-provider

org.jpboss.resteasy.resteasy- | yes Resteasy's atom library.
atom-provider

org.jposs.resteasy.resteasy- | yes Integration with the JSON
jackson-provider parser and object mapper,
Jackson.
org.jposs.resteasy.resteasy- | yes Resteasy's Javascript API.
jsapi
org.jposs.resteasy.resteasy- | yes Features for dealing with
multipart-provider multipart formats.
org.jpboss.resteasy.resteasy- | no S/MIME, DKIM, and support
crypto for other security formats.
org.jboss.resteasy.jose-jwt no JOSE-JWT library. JISON Web
Token.
org.jposs.resteasy.resteasy- | no Alternative JAXB-like parser
jettison-provider for JSON.
org.jpboss.resteasy.resteasy- | no YAML marshalling.

yaml-provider

org.jboss.resteasy.skeleton- | no OAuth2 support for AS7.
key

3.5. Standalone Resteasy in Servlet 3.0 Containers

If you are using resteasy outside of JBoss/Wildfly, in a standalone servlet container like Tomcat
or Jetty you will need to include the core Resteasy jars in your WAR file. Resteasy provides
integration with standalone Servlet 3.0 containers via the Servl et Containerlnitializer

Chapter 3. Installation/Confi...

integration interface. To use this, you must also include the resteasy-servlet-initializer
artifact in your WAR file as well.

<dependency>
<groupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>resteasy-servlet-initializer</artifactld>
<version>3.0.9. Fi nal </ versi on>

</ dependency>

We strongly suggest that you use Maven to build your WAR files as RESTEasy is split into a
bunch of different modules. You can see an example Maven project in one of the examples in the
examples/ directory. If you are not using Maven,when you download RESTeasy and unzip it you
will see a lib/ directory that contains the libraries needed by resteasy. Copy these into your /WEB-
INF/lib directory. Place your JAX-RS annotated class resources and providers within one or more
jars within /WEB-INF/lib or your raw class files within /WEB-INF/classes.

3.6. Standalone Resteasy in Older Servlet Containers

The resteasy-servlet-initializer artifact will not work in Servlet versions older than 3.0.
You'll then have to manually declare the Resteasy servlet in your WEB-INF/web.xml file of your
WAR project. For example:

<web- app>
<di spl ay- name>Ar chet ype Created Web Applicati on</di spl ay- nane>

<servlet>
<servl et - nane>Rest easy</ ser vl et - nane>
<servl et-cl ass>
org.j boss. resteasy. plugi ns. server.servlet. HtpServl et D spatcher
</ servlet-class>
<i nit-paranp
<par am nane>j avax. ws. rs. Appl i cat i on</ par am nane>
<par am val ue>com restful ly. shop. servi ces. Shoppi ngAppl i cati on</ param
val ue>
</init-paranp
</servl et>

<servl et - mappi ng>
<servl et - nane>Rest easy</ ser vl et - nane>
<url-pattern>/*</url-pattern>

</ servl et - mappi ng>

Configuration Switches

</ web- app>

The Resteasy servlet is responsible for initializing some basic components of RESTeasy.

3.7. Configuration Switches

Resteasy receives configuration options from <context-param> elements.

Table 3.2.

Option Name Default Value Description

resteasy.servlet.mapping.prefix no default If the url-pattern for the
Resteasy servlet-mapping is
not /*

resteasy.scan false Automatically scan WEB-INF/
lib jars and WEB-INF/classes
directory for both @Provider
and JAX-RS resource classes
(@Path, @GET, @POST
etc..) and register them

resteasy.scan.providers false Scan for @Provider classes
and register them

resteasy.scan.resources false Scan for JAX-RS resource
classes

resteasy.providers no default A comma delimited list of
fully qualified @Provider class
names you want to register

resteasy.use.builtin.providers | true Whether or not to register
default, built-in @Provider
classes. (Only available in 1.0-
beta-5 and later)

resteasy.resources no default A comma delimited list of fully
qualified JAX-RS resource
class names you want to
register

resteasy.jndi.resources no default A comma delimited list of
JNDI names which reference
objects you want to register as
JAX-RS resources

Chapter 3. Installation/Confi...

Option Name Default Value Description

javax.ws.rs.Application no default Fully qualified name of
Application class to bootstrap
in a spec portable way

resteasy.media.type.mappings no default Replaces the need for an
Accept header by mapping
file name extensions (like .xml
or .txt) to a media type. Used
when the client is unable
to use a Accept header
to choose a representation
(i.e. a browser). See JAX-RS
Content Negotiation chapter
for more details.

resteasy.language.mappings | no default Replaces the need for an
Accept-Language header by
mapping file name extensions
(like .en or .fr) to a language.
Used when the client is unable
to use a Accept-Language
header to choose a language
(i.e. a browser). See JAX-RS
Content Negotiation chapter
for more details

resteasy.document.expand.entitfaieéerences Expand external entities
in org.w3c.dom.Document
documents and JAXB object
representations

resteasy.document.secure.procdasing.feature Impose security constraints in
processing
org.w3c.dom.Document
documents and JAXB object
representations

resteasy.document.secure.disaltieid TDs Prohibit DTDs in
org.w3c.dom.Document
documents and JAXB object
representations

resteasy.wider.request.matchingrue Turns off the JAX-RS spec
defined class-level expression
filtering and instead tries to
match version every method's
full path.

10

javax.ws.rs.core.Application

Option Name Default Value Description

resteasy.use.container.form.parames Will use the
HttpServletRequest.getParameterMap()
method to obtain form
parameters. Use this switch

if you are calling this method

within a servlet filter or eating

the input stream within the

filter.

The resteasy.servlet.mapping.prefix <context param> variable must be set if your servlet-mapping
for the Resteasy servlet has a url-pattern other than /*. For example, if the url-pattern is

<servl et - mappi ng>

<servl et - name>Rest easy</ servl et - nane>

<url -pattern>/restful -services/*</url-pattern>
</ servl et - mappi ng>

Then the value of resteasy-servlet. mapping.prefix must be:

<cont ext - par an>

<par am nane>r est easy. ser vl et . mappi ng. pr ef i x</ par am nane>
<par am val ue>/restful - servi ces</ param val ue>

</ cont ext - par an

3.8. javax.ws.rs.core.Application

The javax.ws.rs.core.Application class is a standard JAX-RS class that you may implement to
provide information on your deployment. It is simply a class the lists all JAX-RS root resources
and providers.

/**
* Defines the conponents of a JAX-RS application and supplies
addi ti onal
* metadata. A JAX-RS application or inplenentation supplies
a concrete

11

Chapter 3. Installation/Confi...

* subcl ass of this abstract class.
*/
public abstract class Application

{
private static final Set<Cbject> enptySet = Col |l ections. enptySet();

/**
* Get a set of root resource and provider classes. The
default lifecycle
* for resource class instances is per-request. The default
lifecycle for
* providers is singleton.
* <p/>
* <p>| npl enent ati ons shoul d warn about and i gnore cl asses that do not
* conformto the requirements of root resource or provider classes.
* | nmpl ement ati ons shoul d warn about and ignore classes for which
* {@ink #get Singletons()} returns an i nstance. |nplenmentations MJST
* NOT nodify the returned set.</p>
*
* @eturn a set of root resource and provi der cl asses. Returning null
* |s equivalent to returning an enpty set.
*/
public abstract Set<C ass<?>> getd asses();

/**

* Get a set of root resource and provider instances. Fields
and properties
* of returned instances are injected with their decl ared dependenci es
* (see {@ink Context}) by the runtine prior to use.
* <p/>
* <p>| npl enent ati ons shoul d warn about and i gnore cl asses that do not
* conformto the requirements of root resource or provider classes.
* | npl ementations should flag an error if the returned set includes
* nore than one instance of the sane class. |nplenentations MJST
* NOT nodify the returned set.</p>
* <p/>
* <p>The default inplenentation returns an enpty set.</p>
*
* @eturn a set of root resource and provider instances.
Ret ur ni ng nul |
* |s equivalent to returning an enpty set.
*/
public Set<Object> getSingl etons()
{
return enptySet;
}

12

RESTEasy as a ServletContextListener

To use Application you must set a servlet init-param, javax.ws.rs.Application with a fully qualified
class that implements Application. For example:

<servl| et >
<servl et - name>Rest easy</ ser vl et - nane>
<servl et-class>
org.j boss. resteasy. plugins. server.servlet. H tpServl et Di spatcher
</servl et-cl ass>
<i nit-paranp
<par am nane>j avax. ws. rs. Appl i cati on</ par am nane>
<param val ue>comrestfully. shop. servi ces. Shoppi ngAppl i cati on</ param
val ue>
</init-paranp
</ servlet>

If you have this set, you should probably turn off automatic scanning as this will probably result
in duplicate classes being registered.

3.9. RESTEasy as a ServletContextListener

This section is pretty much deprecated if you are using a Servlet 3.0 container or higher. Skip it
if you are and read the configuration section above on installing in Servlet 3.0. The initialization
of RESTEasy can be performed within a ServletContextListener instead of within the Servlet.
You may need this if you are writing custom Listeners that need to interact with RESTEasy
at boot time. An example of this is the RESTEasy Spring integration that requires a Spring
ServletContextListener. The org.jboss.resteasy.plugins.server.servlet.ResteasyBootstrap class is
a ServletContextListener that configures an instance of an ResteasyProviderFactory and Registry.
You can obtain instances of a ResteasyProviderFactory and Registry from the ServietContext
attributes org.jboss.resteasy.spi.ResteasyProviderFactory and org.jboss.resteasy.spi.Registry.
From these instances you can programmatically interact with RESTEasy registration interfaces.

<web- app>
<l i stener>
<l i stener-cl ass>
org.j boss. resteasy. pl ugi ns. server. servl et. Rest easyBoot strap
</listener-cl ass>
</listener>

13

Chapter 3. Installation/Confi...

<I-- ** |NSERT YOUR LI STENERS HERE!'! I'l -->

<servl et>
<servl et - nane>Rest easy</ ser vl et - nane>
<servl et-cl ass>
org.j boss. resteasy. pl ugi ns. server. servl et. H t pServl et Di spatcher
</servl et-cl ass>
</servl et>

<servl et - mappi ng>
<servl et - nane>Rest easy</ ser vl et - nane>
<url -pattern>/resteasy/*</url-pattern>
</ servl et - mappi ng>

</ web- app>

3.10. RESTEasy as a servlet Filter

This section is pretty much deprecated if you are using a Servlet 3.0 container or higher. Skip it
if you are and read the configuration section above on installing in Servlet 3.0. The downside of
running Resteasy as a Servlet is that you cannot have static resources like .html and .jpeg files
in the same path as your JAX-RS services. Resteasy allows you to run as a Filter instead. If a
JAX-RS resource is not found under the URL requested, Resteasy will delegate back to the base
servlet container to resolve URLSs.

<web- app>
<filter>
<filter-name>Resteasy</filter-name>
<filter-class>
org.j boss.resteasy. plugins. server.servlet.FilterDi spatcher
</filter-class>
<i nit-paranpr
<par am nane>j avax. ws. rs. Appl i cat i on</ par am nane>
<par am val ue>comrestfully. shop. servi ces. Shoppi ngAppl i cati on</ param
val ue>
</init-paranp
</filter>

<filter-mappi ng>
<filter-name>Resteasy</filter-name>
<url-pattern>/*</url-pattern>
</filter-mappi ng>

14

RESTEasyLogging

</ web- app>

3.11. RESTEasyLogging

RESTEasy supports logging via java.util.logging, Log4j, or SIf4j. How it picks which framework to
delegate to is expressed in the following algorithm:

If log4j is in the application's classpath, log4j will be used

If sIf4j is in the application's classpath, slf4j will be used

« java.util.logging is the default if neither log4j or slf4j is in the classpath

If the servlet context param resteasy.logger.type is set to JUL, LOG4J, or SLF4J will override
this default behavior

The logging categories are still a work in progress, but the initial set should make it easier to
troubleshoot issues. Currently, the framework has defined the following log categories:

Table 3.3.

Category Function

org.jboss.resteasy.core Logs all activity by the core RESTEasy
implementation

org.jboss.resteasy.plugins.providers Logs all activity by RESTEasy entity providers

org.jboss.resteasy.plugins.server Logs all activity by the RESTEasy server
implementation.

org.jboss.resteasy.specimpl Logs all activity by JAX-RS implementing
classes

org.jboss.resteasy.mock Logs all activity by the RESTEasy mock
framework

15

16

Chapter 4.

Chapter 4. Using @Path and @GET,
@POST, etc.

@ath("/1ibrary")
public class Library {

@ET
@rat h("/ books")
public String getBooks() {...}

@=ET
@rat h("/ book/{isbn}")
public String get Book(@athParan("isbn") String id) {
/] search ny database and get a string representation and return it

@ur

@Pat h("/ book/{isbn}")

public void addBook(@at hParan("isbn") String id, @ueryParan("nanme") String
nane) {...}

@ELETE
@at h("/book/ {id}")
public void renoveBook(@&athParam("id") String id {...}

Let's say you have the Resteasy servlet configured and reachable at a root path of http://
myhost.com/services. The requests would be handled by the Library class:

GET http://myhost.com/services/library/books

GET http://myhost.com/services/library/book/333

PUT http://myhost.com/services/library/book/333
« DELETE http://myhost.com/services/library/book/333

The @javax.ws.rs.Path annotation must exist on either the class and/or a resource method. If it
exists on both the class and method, the relative path to the resource method is a concatenation
of the class and method.

17

Chapter 4. Using @Path and @G...

In the @javax.ws.rs package there are annotations for each HTTP method. @GET, @POST,
@PUT, @DELETE, and @HEAD. You place these on public methods that you want to map to
that certain kind of HTTP method. As long as there is a @Path annotation on the class, you do
not have to have a @Path annotation on the method you are mapping. You can have more than
one HTTP method as long as they can be distinguished from other methods.

When you have a @Path annotation on a method without an HTTP method, these are called
JAXRSResourcelLocators.

4.1. @Path and regular expression mappings

The @Path annotation is not limited to simple path expressions. You also have the ability to insert
regular expressions into @Path's value. For example:

@Pat h("/ resources)
public class MyResource {

@=ET
@at h("{var:.*}/stuff")
public String get() {...}

The following GETs will route to the getResource() method:

GET /resources/stuff
CET /resources/fool/stuff
CET /resources/on/ and/ on/ st uf f

The format of the expression is:

"{" variable-name [":" regul ar-expression] "}"

The regular-expression part is optional. When the expression is not provided, it defaults to a
wildcard matching of one particular segment. In regular-expression terms, the expression defaults
to

(1"

18

@Path and regular expression mappings

For example:
@Path("/resources/{var}/stuff")

will match these:

GET /resources/foolstuff

CET /resources/ bar/stuff

but will not match:

CET /resources/ al bunch/ of / st uf f

19

20

Chapter 5.

Chapter 5. @PathParam

@PathParam is a parameter annotation which allows you to map variable URI path fragments
into your method call.

@ath("/library")
public class Library {

@ZET
@Pat h("/ book/{isbn}")
public String get Book(@athParan("isbn") String id) {
/'l search ny database and get a string representation and return it

What this allows you to do is embed variable identification within the URIs of your resources. In
the above example, an isbn URI parameter is used to pass information about the book we want to
access. The parameter type you inject into can be any primitive type, a String, or any Java object
that has a constructor that takes a String parameter, or a static valueOf method that takes a String
as a parameter. For example, lets say we wanted isbn to be a real object. We could do:

@=ET
@rat h("/ book/{isbn}")
public String get Book(@athParan("isbn") ISBNid) {...}

public class | SBN {
public ISBN(String str) {...}

Or instead of a public String constructors, have a valueOf method:

public class | SBN {

public static ISBN valueO(String isbn) {...}

21

Chapter 5. @PathParam

5.1. Advanced @PathParam and Regular Expressions

There are a few more complicated uses of @PathParams not discussed in the previous section.

You are allowed to specify one or more path params embedded in one URI segment. Here are
some examples:

1. @at h("/aaa{paran}bbb")
2. @ath("/{name}-{zip}")
3. @ath("/foo{nane}-{zip}bar")

So, a URI of "faaall1bbb" would match #1. "/bill-02115" would match #2. "foobill-02115bar" would
match #3.

We discussed before how you can use regular expression patterns within @Path values.

@xET

@rat h("/ aaa{ param b+}/{many: . *}/stuff")

public String getlt(@athParam("param') String bs, @PathParan("nmany") String
many) {...}

For the following requests, lets see what the values of the "param” and "many" @PathParams
would be:

Table 5.1.

Request param many

GET /aaabb/some/stuff ‘ bb some

GET /aaab/a/lot/of/stuff ‘ b allot/of

5.2. @PathParam and PathSegment

The specification has a very simple abstraction for examining a fragment of the URI path being
invoked on javax.ws.rs.core.PathSegment:

22

@PathParam and PathSegment

public interface PathSegnent {

/**

* CGet the path segnent.

* o<p>

* @eturn the path segnent
*/

String getPath();

/**

* Get a map of the matrix paraneters associated with the path segnent
* @eturn the map of matrix paraneters

*/

Mul ti val uedMap<String, String> getMtri xParaneters();

You can have Resteasy inject a PathSegment instead of a value with your @PathParam.

@ET
@at h("/ book/ {id}")
public String get Book(@at hParan("id") PathSegnment id) {...}

This is very useful if you have a bunch of @PathParams that use matrix parameters. The idea
of matrix parameters is that they are an arbitrary set of name-value pairs embedded in a uri path
segment. The PathSegment object gives you access to these parameters. See also MatrixParam.

A matrix parameter example is:
GET http://host.com/library/book;name=EJB 3.0;author=Bill Burke

The basic idea of matrix parameters is that it represents resources that are addressable by their
attributes as well as their raw id.

23

24

Chapter 6.

Chapter 6. @QueryParam

The @QueryParam annotation allows you to map a URI query string parameter or url form
encoded parameter to your method invocation.

GET /books?num=5

@ET
public String get Books(@ueryParan("nunt') int num {

Currently since Resteasy is built on top of a Servlet, it does not distinguish between URI query
strings or url form encoded paramters. Like PathParam, your parameter type can be an String,
primitive, or class that has a String constructor or static valueOf() method.

25

26

Chapter 7.

Chapter 7. @HeaderParam

The @HeaderParam annotation allows you to map a request HTTP header to your method
invocation.

GET /books?num=5

@ET
public String get Books(@eader Param("From') String from ({

Like PathParam, your parameter type can be an String, primitive, or class that has a String
constructor or static valueOf() method. For example, MediaType has a valueOf() method and you
could do:

@utr
public void put(@eader Paran{" Cont ent - Type") Medi aType content Type, ...)

27

28

Chapter 8.

Chapter 8. Linking resources

There are two mechanisms available in RESTEasy to link a resource to another, and to
link resources to operations: the Link HTTP header, and Atom links inside the resource
representations.

8.1. Link Headers

RESTEasy has both client ~and server side support for the Link
header specification [http://tools.ietf.org/html/draft-nottingham-http-link-header-06]. See
the javadocs for org.jboss.resteasy.spi.LinkHeader, org.jboss.resteasy.spi.Link, and
org.jboss.resteasy.client.ClientResponse.

The main advantage of Link headers over Atom links in the resource is that those links are
available without parsing the entity body.

8.2. Atom links in the resource representations

RESTEasy allows you to inject Atom links [http://tools.ietf.org/html/rfc4287#section-4.2.7] directly
inside the entity objects you are sending to the client, via auto-discovery.

Warning

This is only available when using the Jettison or JAXB providers (for JSON and
XML).

The main advantage over Link headers is that you can have any number of Atom links directly
over the concerned resources, for any number of resources in the response. For example, you
can have Atom links for the root response entity, and also for each of its children entities.

8.2.1. Configuration

There is no configuration required to be able to inject Atom links in your resource representation,
you just have to have this maven artifact in your path:

Table 8.1. Maven artifact for Atom link injection

Group Artifact Version

org.jboss.resteasy resteasy-links 3.0.9.Final

8.2.2. Your first links injected

You need three things in order to tell RESTEasy to inject Atom links in your entities:

29

http://tools.ietf.org/html/draft-nottingham-http-link-header-06
http://tools.ietf.org/html/draft-nottingham-http-link-header-06
http://tools.ietf.org/html/draft-nottingham-http-link-header-06
http://tools.ietf.org/html/rfc4287#section-4.2.7
http://tools.ietf.org/html/rfc4287#section-4.2.7

Chapter 8. Linking resources

« Annotate the JAX-RS method with @ddLi nks to indicate that you want Atom links injected in
your response entity.

» Add RESTSer vi ceDi scover y fields to the resource classes where you want Atom links injected.

« Annotate the JAX-RS methods you want Atom links for with @.i nkResour ce, so that RESTEasy
knows which links to create for which resources.

The following example illustrates how you would declare everything in order to get the Atom links
injected in your book store:

@ath("/")
@Consunes({"application/xm", "application/json"})
@r oduces({"application/xm", "application/json"})

public interface BookStore {

@\ddLi nks

@.i nkResour ce(val ue = Book. cl ass)
@ET

@Pat h("books")

public Coll ection<Book> get Books();

@i nkResour ce

@osT

@Pat h(" books")

public void addBook(Book book);

@\ddLi nks

@.i nkResour ce

@ET

@pat h(" book/ {id}")

publ i ¢ Book get Book(@at hParam("id") String id);

@.i nkResour ce

@ur

@pat h(" book/ {id}")

public voi d updat eBook(@at hParan("id") String id, Book book);

@.i nkResour ce(val ue = Book. cl ass)

@ELETE

@pat h(" book/ {id}")

public void del et eBook(@at hParan("id") String id);

And this is the definition of the Book resource:

30

Your first links injected

@mpped(nanespaceMap = @Xm NsMap(j sonName = "atonl, nanmespace = "http://
www. W3. or g/ 2005/ At omi'))
@Xm Root El emrent
@M Accessor Type(Xm AccessType. NONE)
public class Book {
@m Attribute
private String author;

@ 1D
@m Attribute
private String title;

@ El enent Ref
private RESTServiceDi scovery rest;

If you do a GET /order/foo you will then get this XML representation:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>

<book xm ns:atonme"http://ww. w3. org/ 2005/ At ont' title="foo" author="bar">
<atom | ink href="http://1ocal host: 8081/ books" rel ="list"/>

<atom | ink href="http://|ocal host: 8081/ books" rel ="add"/>

<atom link href="http://1ocal host: 8081/ book/foo" rel ="self"/>

<atom link href="http://1ocal host: 8081/ book/foo" rel ="update"/>
<atom | ink href="http://1ocal host: 8081/ book/foo" rel ="renove"/>

</ book>

And in JSON format:

{
"book":
{
"@itle":"foo",
"@ut hor": "bar",
"atom | ink":
[
{"@wref":"http://1ocal host: 8081/ books","@el ":"list"},
{"@ref":"http://]ocal host: 8081/ books","@el ":"add"},
{"@ref":"http://1ocal host: 8081/ book/foo","@el":"sel f"},
{"@ref":"http://1ocal host: 8081/ book/foo","@el":"update"},
{"@ref":"http://]ocal host: 8081/ book/foo","@el":"renove"}
]
}
}

31

Chapter 8. Linking resources

8.2.3. Customising how the Atom links are serialised

Because the RESTSer vi ceDi scovery is in fact a JAXB type which inherits from Li st you are free
to annotate it as you want to customise the JAXB serialisation, or just rely on the default with
@ El enment Ref .

8.2.4. Specifying which JAX-RS methods are tied to which
resources

This is all done by annotating the methods with the @i nkResour ce annotation. It supports the
following optional parameters:

Table 8.2.

@i nkResour ce parameters

Parameter Type Function Default

value d ass Declares an Atom link Defaults to the entity
for the given type of body type (non-
resources. annotated parameter),

or the method's
return type. This
default does not
work with Response
or Col | ecti on types,
they need to be
explicitly specified.
rel String The Atom link relation list
For GET methods
returning a
Col I ecti on

self
For GET methods
returning a non-

Col |l ection
remove
For DELETE
methods
update

For PUT methods

add
For POST methods

32

Specifying path parameter values for URI templates

You can add several @i nkResour ce annotations on a single method by enclosing them in a
@i nkResour ces annotation. This way you can add links to the same method on several resource
types. For example the / or der / f oo/ conment s operation can belongs on the Or der resource with
the conment s relation, and on the Conment resource with the i st relation.

8.2.5. Specifying path parameter values for URI templates

When RESTEasy adds links to your resources it needs to insert the right values in the URI
template. This is done either automatically by guessing the list of values from the entity, or by
specifying the values in the @.i nkResour ce pat hPar anet er s parameter.

8.2.5.1. Loading URI template values from the entity

URI template values are extracted from the entity from fields or Java Bean properties annotated
with @esour cel D, JAXB's @nl | D or JPA's @ d. If there are more than one URI template value
to find in a given entity, you can annotate your entity with @Resour cel Ds to list the names of
fields or properties that make up this entity's Id. If there are other URI template values required
from a parent entity, we try to find that parent in a field or Java Bean property annotated with
@ar ent Resour ce. The list of URI template values extracted up every @ar ent Resour ce is then
reversed and used as the list of values for the URI template.

For example, let's consider the previous Book example, and a list of comments:

@ Root El enent
@Xm Accessor Type(Xm AccessType. NONE)
public class Comrent {

@ar ent Resour ce

private Book book;

@ El enent
private String author;

@n | D
@m Attribute
private String id;

@Xm El enent Ref
private RESTServiceDi scovery rest;

Given the previous book store service augmented with comments:

@ath("/")
@onsunes({"application/xm", "application/json"})
@r oduces({"application/xm", "application/json"})

public interface BookStore {

33

Chapter 8. Linking resources

@\ddLi nks

@i nkResour ces({
@.i nkResour ce(val ue = Book. class, rel = "conments"),
@i nkResour ce(val ue = Comment . cl ass)

})

@EET

@rat h(" book/{i d}/ coments")
public Col | ecti on<Comment > get Conment s(@at hParam("i d") String bookld);

@\ddLi nks

@.i nkResour ce

@ET

@rat h(" book/ {i d}/coment/ {cid}")

publ i c Comment get Corment (@&at hParan("id") String bookld, @PathParan("cid") String comentl

@.i nkResource

@osT

@rat h(" book/{i d}/coments")

public void addComment (@at hParan("id") String bookld, Conment commrent);

@.i nkResour ce

@ur

@rat h("book/{id}/coment/{cid}")

public voi d updat eCorment (@&at hParan("id") String bookld, @athParan("cid") String comentl

@i nkResour ce(Comment . cl ass)

@ELETE
@Pat h("book/{id}/coment/{cid}")
public void del et eCorment (@at hParan("id") String bookld, @PathParan("cid") String comentl

Whenever we need to make links for a Book entity, we look up the ID in the Book's @l | Dproperty.
Whenever we make links for Comment entities, we have a list of values taken from the Comrment 's
@ |1 Dand its @ar ent Resour ce: the Book and its @l | D.

For a Comment withid " 1" onaBook withtitle"foo" we will therefore get a list of URI template
values of {"foo", "1"}, to be replaced in the URI template, thus obtaining either "/ book/ f oo/
coment s" or "/ book/ f oo/ conment/ 1".

8.2.5.2. Specifying path parameters manually

If you do not want to annotate your entities with resource ID annotations (@Resour cel D,
@Resour cel Ds, @ | D or @d) and @Par ent Resour ce, you can also specify the URI template
values inside the @.i nkResour ce annotation, using Unified Expression Language expressions:

Table 8.3.

34

Specifying path parameter values for URI templates

@i nkResour ce URI template parameter

Parameter Type Function Default

pathParameters String[] Declares a list of UEL Defaults to using

expressions to obtain @Resour cel D,

the URI template @Resourcel Ds,

values. @nID or @d and
@ar ent Resour ce
annotations to extract
the values from the
model.

The UEL expressions are evaluated in the context of the entity, which means that any unqualified
variable will be taken as a property for the entity itself, with the special variable t hi s bound to
the entity we're generating links for.

The previous example of Corment service could be declared as such:

@at h(n/ n)
@Consunes({"application/xm", "application/json"})
@r oduces({"application/xm", "application/json"})

public interface BookStore {

@\ddLi nks
@i nkResour ces({
@.i nkResour ce(val ue = Book.class, rel = "comments", pathParanmeters = "${title}"),
@.i nkResour ce(val ue = Comment . cl ass, pathParameters = {"${book.title}", "${id}"})
})
@ET

@rat h(" book/{i d}/coments")
public Col | ecti on<Comment > get Conment s(@at hParam("i d") String bookld);

@\ddLi nks

@.i nkResour ce(pat hParaneters = {"${book.title}", "${id}"})

@ET

@rat h(" book/ {i d}/comment/ {cid}")

publ i c Comment get Comment (@&at hParan("id") String bookld, @PathParan("cid") String comentl

@.i nkResour ce(pat hParaneters = {"${book.title}", "${id}"})

@osT

@rat h(" book/ {i d}/ coments")

public void addConmment (@at hParan("id") String bookld, Conment commrent);

@.i nkResour ce(pat hParaneters = {"${book.title}", "${id}"})

@ur

@rat h("book/{id}/coment/{cid}")

public void updat eCorment (@&at hParan("id") String bookld, @athParan("cid") String comentl

35

Chapter 8. Linking resources

@.i nkResour ce(Comment . cl ass, pathParanmeters = {"${book.title}", "${id}"})

@ELETE
@rat h("book/{id}/coment/{cid}")
public void del et eComment (@at hParan("id") String bookld, @PathParan("cid") String comentl

8.2.6. Securing entities

You can restrict which links are injected in the resource based on security restrictions for the client,
so that if the current client doesn't have permission to delete a resource he will not be presented
with the " del et e" link relation.

Security restrictions can either be specified onthe @Q.i nkResour ce annotation, or using RESTEasy
and EJB's security annotation @rol esAl | owed on the JAX-RS method.

Table 8.4.

@i nkResour ce Security restrictions

Parameter Type Function Default

constraint String A UEL expression Defaults to using
which must evaluate @Rrol esAl | owed from
to true to inject this the JAX-RS method.
method's link in the
response entity.

8.2.7. Extending the UEL context

We've seen that both the URI template values and the security constraints of @i nkResour ce use
UEL to evaluate expressions, and we provide a basic UEL context with access only to the entity
we're injecting links in, and nothing more.

If you want to add more variables or functions in this context, you can by adding a
@i nkELPr ovi der annotation on the JAX-RS method, its class, or its package. This annotation's
value should point to a class that implements the ELPr ovi der interface, which wraps the default
ELCont ext in order to add any missing functions.

For example, if you want to support the Seam annotation s:hasPerni ssion(target,
per mi ssi on) in your security constraints, you can add a package-i nf o. j ava file like this:

@i nkELPr ovi der (SeanELPr ovi der . cl ass)
package org.jboss.resteasy.links.test;

i mport org.jboss.resteasy.|inks.*;

36

Extending the UEL context

With the following provider implementation:

package org.jboss.resteasy.links.test;

i mport javax. el .ELContext;

i mport javax. el . ELResol ver;

i mport javax.el.FunctionMapper;
i nport javax. el . Vari abl eMapper;

i mport org.jboss.seam el . Seanfuncti onMapper ;
i nport org.jboss.resteasy.|inks. ELProvider;
public class SeanELProvider inplenments ELProvider {

publi c ELContext getContext(final ELContext ctx) {
return new ELContext () {

private Seanfuncti onMapper functionMapper;

@verride
publ i c ELResol ver get ELResol ver() {
return ctx.get ELResol ver ();

@verride
publi ¢ Functi onMapper getFuncti onMapper() {
if (functionMapper == null)
functi onMapper = new Seanfuncti onMapper (ct x
. get Functi onMapper ());
return functi onMapper;

@verride
publi c Vari abl eMapper getVari abl eMapper () {
return ctx.getVariabl eMapper();

And then use it as such:

@ath("/")
@onsunes({"application/xm", "application/json"})
@r oduces({"application/xm", "application/json"})

37

Chapter 8. Linking resources

public interface BookStore {

@\ddLi nks
@.i nkResour ces({
@i nkResour ce(val ue=Book. cl ass,rel =" coment s", constrai nt="${s: hasPerm ssi on(this,
"add-comment')}"),
@.i nkResour ce(val ue = Comment . cl ass, constraint = "${s: hasPerm ssi on(this,
"insert')}")
})
@ET
@rat h(" book/{i d}/coments")
public Col | ecti on<Comment > get Conment s(@at hParam("id") String bookld);

@\ddLi nks

@.i nkResource(constraint = "${s: hasPerm ssion(this, 'read)}")

@EET

@Pat h("book/{id}/coment/{cid}")

publi ¢ Comment get Corment (@&at hParan("id") String bookld, @PathParan("cid") String comentl

@.i nkResource(constraint = "${s: hasPerm ssion(this, "insert')}")

@osT

@Pat h("book/{i d}/comments")

public void addComment (@at hParan("id") String bookld, Conment comment);

@.i nkResour ce(constraint = "${s: hasPerm ssion(this, 'update')}")

@\ur

@rat h(" book/{id}/coment/{cid}")

public void updat eCorment (@&at hParan("id") String bookld, @PathParan("cid") String comentl

@.i nkResource(Comment . cl ass, «constraint = "${s:hasPerm ssion(this,
"delete')}")

@ELETE
@Pat h("book/{id}/coment/{cid}")
public void del et eCorment (@at hParan("id") String bookld, @PathParan("cid") String comentl

8.2.8. Resource facades

Sometimes it is useful to add resources which are just containers or layers on other resources. For
example if you want to represent a collection of Comment with a start index and a certain number
of entries, in order to implement paging. Such a collection is not really an entity in your model, but
it should obtain the "add" and "l i st" link relations for the Conment entity.

This is possible using resource facades. A resource facade is a resource which implements the
Resour ceFacade<T> interface for the type T, and as such, should receive all links for that type.

38

Resource facades

Since in most cases the instance of the T type is not directly available in the resource facade,
we need another way to extract its URI template values, and this is done by calling the resource
facade's pat hPar anet er s() method to obtain a map of URI template values by name. This map
will be used to fill in the URI template values for any link generated for T, if there are enough
values in the map.

Here is an example of such a resource facade for a collection of Comment s:

@ Root El enent
@m Accessor Type(Xml AccessType. NONE)
public class ScrollableCollection inplenents ResourceFacade<Conmrent > {

private String bookl d;

@m Attribute

private int start;

@m Attribute

private int total Records;

@m El erent

private List<Comrent> coments = new ArrayLi st <Comment >();
@l El enent Ref

private RESTServiceDi scovery rest;

public C ass<Conment > facadeFor () {
return Commrent.cl ass;

public Map<String, ? extends Object> pathParanmeters() {
HashMap<String, String> map = new HashMap<String, String>();
map. put ("id", bookld);
return nmap;

This will produce such an XML collection:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<col |l ection xm ns: atom="ht t p: / / www. wW3. or g/ 2005/
Atont" total Records="2" start="0">
<atom link href="http://1ocal host: 8081/ book/f oo/ cooments" rel ="add"/>
<atom |ink href="http://1ocal host: 8081/ book/foo/ corments" rel ="list"/>
<conment xniid="0">
<t ext >great book</text>
<atom | ink href="http://1ocal host: 8081/ book/f oo/ conment/ 0" rel ="sel f"/>
<atom | ink href="http://1 ocal host: 8081/ book/f oo/ comment/ 0" rel ="update"/>
<atom | ink href="http://|ocal host: 8081/ book/foo/ comrent/0" rel ="renove"/>

39

Chapter 8. Linking resources

<atom |ink href="http://Iocal host:
<atom|link href="http://Ilocal host:

</ comment >
<comment xmid="1">
<text>terrible book</text>

<atom|link href="http://Ilocal host:
<atom |l ink href="http://I| ocal host:
<atom |l ink href="http://I|ocal host:
<atom |link href="http://Ilocal host:
<atom|link href="http://Ilocal host:

</ comment >
</col |l ecti on>

8081/ book/ f oo/ corment s*"
8081/ book/ f oo/ conment s*

8081/ book/ f oo/ conment / 1"
8081/ book/ f oo/ conment / 1"
8081/ book/ f oo/ conment / 1"

8081/ book/ f oo/ comment s*"
8081/ book/ f oo/ conment s*

rel ="add"/ >
rel ="list"/>

rel ="sel f"/>
rel ="update"/ >
rel ="renove"/ >
rel ="add"/ >
rel ="list"/>

40

Chapter 9.

Chapter 9. @MatrixParam

The idea of matrix parameters is that they are an arbitrary set of name-value pairs embedded in
a uri path segment. A matrix parameter example is:

GET http://host.com/library/book;name=EJB 3.0;author=Bill Burke

The basic idea of matrix parameters is that it represents resources that are addressable by their
attributes as well as their raw id. The @MatrixParam annotation allows you to inject URI matrix
parameters into your method invocation

@ET
public String get Book(@mtrixParan("nane") String name, @atrixParan("author")
String author) {...}

There is one big problem with @MatrixParam that the current version of the specification does
not resolve. What if the same MatrixParam exists twice in different path segments? In this case,
right now, its probably better to use PathParam combined with PathSegment.

41

42

Chapter 10.

Chapter 10. @CookieParam

The @CookieParam annotation allows you to inject the value of a cookie or an object
representation of an HTTP request cookie into your method invocation

GET /books?num=5

@ET
public String get Books(@ooki eParam("sessionid") int id) {

@ET

publi cString get Books(@ooki eParan("sessioni d") javax.ws.rs.core. Cookie id)

...}

Like PathParam, your parameter type can be an String, primitive, or class that has a String
constructor or static valueOf() method. You can also get an object representation of the cookie
via the javax.ws.rs.core.Cookie class.

43

44

Chapter 11.

Chapter 11. @FormParam

When the input request body is of the type "application/x-www-form-urlencoded", a.k.a. an HTML
Form, you can inject individual form parameters from the request body into method parameter
values.

<f or m met hod="POST" acti on="/resources/service">
First name:

<input type="text" name="firstnanme">

Last nane:

<i nput type="text" name="|astnanme">

</fornp

If you post through that form, this is what the service might look like:

@at h(||/ ||)
public class NaneRegistry {

@at h("/resources/service")
@osT
public voi d addNane(@or nParan("firstnane") String first,
@-or mPar am(" | astnane") String last) {...}

You cannot combine @FormParam with the default "application/x-www-form-urlencoded” that
unmarshalls to a MultivaluedMap<String, String>. i.e. This is illegal:

@ath("/")
public class NameRegi stry {

@at h("/resources/service")
@GosT
@onsumes("appl i cati on/ x- ww«+ f or m ur | encoded")
public voi d addNane(@or nPar an("first nane") String first,
Mul tival uedMap<String, String> form {...}

45

46

Chapter 12.

Chapter 12. @Form

This is a RESTEasy specific annotation that allows you to re-use any @*Param annotation
within an injected class. RESTEasy will instantiate the class and inject values into any annotated
@*Param or @Context property. This is useful if you have a lot of parameters on your method
and you want to condense them into a value object.

public class MyForm {

@-or mPar am("stuff")
private int stuff;

@-eader Par an{ " nyHeader ")
private String header;

@rat hPar anm(" f oo")
public void setFoo(String foo) {...}

@GcsT
@at h("/ nyservice")
public void post(@orm MFormform {...}

When somebody posts to /myservice, RESTEasy will instantiate an instance of MyForm and inject
the form parameter "stuff* into the "stuff" field, the header "myheader"” into the header field, and
call the setFoo method with the path param variable of "foo".

Also, @Form has some expanded @FormParam features. If you specify a prefix within the Form
param, this will prepend a prefix to any form parameter lookup. For example, let's say you have
one Address class, but want to reference invoice and shipping addresses from the same set of
form parameters:

public static class Person

{

@-or nPar anm(" nane")
private String nane;

47

Chapter 12. @Form

@ornm(prefix = "invoice")
private Address invoice;

@orm(prefix = "shipping")
private Address shi pping;

}
public static class Address
{
@-or nmPar am("street")
private String street;
}

@Pat h(" person")
public static class MyResource

{

@osT

@Pr oduces(Medi aType. TEXT_PLAI N)

@Consumnes(Medi aType. APPLI CATI ON_FORM_URLENCODED)
public String post(@orm Person p)

{
return p.toString();

In this example, the client could send the following form parameters:

nane=bi | |
i nvoi ce. st reet =xxx
shi ppi ng. street =yyy

The Person.invoice and Person.shipping fields would be populated appropriately. Also, prefix
mappings also support lists and maps:

public static class Person {
@orm(prefix="tel ephoneNunbers") List<Tel ephoneNunber> tel ephoneNunbers;
@orm(prefix="address") Map<String, Address> addresses;

48

public static class Tel ephoneNunmber {
@-or mPar am(" countryCode") private String countryCode;
@-or mPar am(" nunber") private String nunber;

public static class Address {
@-ormParam("street") private String street;
@-or mPar am(" houseNunber") private String houseNunber;

@rat h(" person")
public static class MyResource {

@GCsT
@onsunes(Medi aType. APPLI CATI ON_FORM_URLENCCDED)
public void post (@orm Person p) {}

The following form params could be submitted and the Person.telephoneNumbers and
Person.addresses fields would be populated appropriately

request . addFor nHeader ("t el ephoneNunber s[0] . count ryCode", "31");
request . addFor nHeader ("t el ephoneNunber s[0] . nunber", "0612345678");
r equest . addFor nHeader ("t el ephoneNunber s[1] . count ryCode", "91");
request . addFor nHeader ("t el ephoneNunber s[1] . nunber”, "9717738723");
request . addFor nHeader ("address[I NVO CE] . street", "Main Street");
request . addFor nHeader (" addr ess[| NVO CE] . houseNunber", "2");
request . addFor nHeader (" addr ess[SH PPI NG . street”, "Square One");
request . addFor nHeader (" addr ess[SHI PPI NG . houseNunber ", "13");

49

50

Chapter 13.

Chapter 13. @DefaultValue

@DefaultValue is a parameter annotation that can be combined with any of the other @*Param
annotations to define a default value when the HTTP request item does not exist.

@=ET
public String getBooks(@ueryParan("num') @efaultValue("10") int num {...}

51

52

Chapter 14.

Chapter 14. @Encoded and
encoding

JAX-RS allows you to get encoded or decoded @*Params and specify path definitions and
parameter names using encoded or decoded strings.

The @javax.ws.rs.Encoded annotation can be used on a class, method, or param. By default,
inject @PathParam and @QueryParams are decoded. By additionally adding the @Encoded
annotation, the value of these params will be provided in encoded form.

@at h(||/ ||)
public class MyResource {

@at h("/{paran}")
@ET
public String get(@Pat hParan("param') @Encoded String param) {...}

In the above example, the value of the @PathParam injected into the param of the get() method
will be URL encoded. Adding the @Encoded annotation as a paramater annotation triggers this
affect.

You may also use the @Encoded annotation on the entire method and any combination of
@QueryParam or @PathParam's values will be encoded.

@)at h(u/ u)
public class MyResource {

@at h("/{param")

@ET

@:ncoded

public String get(@ueryParan("foo") String foo, @PathParanm("parant) String
param {}
}

In the above example, the values of the "foo" query param and "param" path param will be injected
as encoded values.

You can also set the default to be encoded for the entire class.

53

Chapter 14. @Encoded and encoding

@ath("/")
@:ncoded
public class O assEncoded {

@ET
public String get(@ueryParan("foo") String foo) {}

The @Path annotation has an attribute called encode. Controls whether the literal part of the
supplied value (those characters that are not part of a template variable) are URL encoded. If true,
any characters in the URI template that are not valid URI character will be automatically encoded.
If false then all characters must be valid URI characters. By default this is set to true. If you want
to encoded the characters yourself, you may.

@Pat h(val ue="hel | 0%20wor | d", encode=fal se)

Much like @Path.encode(), this controls whether the specified query param name should be
encoded by the container before it tries to find the query param in the request.

@uer yPar an(val ue="hel | 0%20wor | d", encode=f al se)

54

Chapter 15.

Chapter 15. @Context

The @Context annotation allows you to inject instances of javax.ws.rs.core.HttpHeaders,
javax.ws.rs.core.Urilnfo, javax.ws.rs.core.Request, javax.servlet.HttpServietRequest,
javax.servlet.HttpServletResponse, javax.servlet.ServletConfig, javax.servlet.ServletContext,
and javax.ws.rs.core.SecurityContext objects.

55

56

Chapter 16.

Chapter 16. JAX-RS Resource
Locators and Sub Resources

Resource classes are able to partially process a request and provide another "sub" resource object
that can process the remainder of the request. For example:

@ath("/")
public class Shoppi ngStore {

@rat h("/customers/ {id}")

publ i ¢ Customer get Custoner(@athParam("id") int id) {
Custoner cust = ...; // Find a custoner object
return cust;

public class Customer {

@ET
public String get() {...}

@rat h("/ address")
public String getAddress() {...}

Resource methods that have a @Path annotation, but no HTTP method are considered sub-
resource locators. Their job is to provide an object that can process the request. In the above
example ShoppingStore is a root resource because its class is annotated with @Path. The
getCustomer() method is a sub-resource locator method.

If the client invoked:
GET /custoner/ 123

The ShoppingStore.getCustomer() method would be invoked first. This method provides a
Customer object that can service the request. The http request will be dispatched to the
Customer.get() method. Another example is:

57

Chapter 16. JAX-RS Resource L...

GET /custoner/ 123/ addr ess

In this request, again, first the ShoppingStore.getCustomer() method is invoked. A customer object
is returned, and the rest of the request is dispatched to the Customer.getAddress() method.

Another interesting feature of Sub-resource locators is that the locator method result is
dynamically processed at runtime to figure out how to dispatch the request. So, the
ShoppingStore.getCustomer() method does not have to declare any specific type.

@ath("/")
public class ShoppingStore {

@at h("/custoners/{id}")

public java.l ang. Obj ect get Customer(@athParan("id") int id) {
Custoner cust = ...; // Find a custoner object
return cust;

public class Custoner {

@sET
public String get() {...}

@rat h("/ address")
public String getAddress() {...}

In the above example, getCustomer() returns a java.lang.Object. Per request, at runtime, the
JAX-RS server will figure out how to dispatch the request based on the object returned by
getCustomer(). What are the uses of this? Well, maybe you have a class hierarchy for your
customers. Customer is the abstract base, CorporateCustomer and IndividualCustomer are
subclasses. Your getCustomer() method might be doing a Hibernate polymorphic query and
doesn't know, or care, what concrete class is it querying for, or what it returns.

@ath("/")
public class ShoppingStore {

@at h("/customers/ {id}")

58

public java.l ang. Obj ect get Custoner (@at hParan("id")
Custoner cust = entityManager. find(Custoner. cl ass,
return cust;

public class Customer {

@ET
public String get() {...}

@Pat h("/ address")
public String getAddress() {...}

public class CorporateCustonmer extendsCustoner {

@rat h("/ busi nessAddr ess")
public String getAddress() {...}

i nt

id) {

id);

59

60

Chapter 17.

Chapter 17. JAX-RS Content
Negotiation

The HTTP protocol has built in content negotiation headers that allow the client and server to
specify what content they are transferring and what content they would prefer to get. The server
declares content preferences via the @Produces and @Consumes headers.

@Consumes is an array of media types that a particular resource or resource method consumes.
For example:

@Consunes("text/*")
@ath("/library")
public class Library {

@GosT

public String stringBook(String book) {...}

@Consunes("text/xm ")
@OoSsT
public String jaxbBook(Book book) {...}

When a client makes a request, JAX-RS first finds all methods that match the path, then, it sorts
things based on the content-type header sent by the client. So, if a client sent:

POST /library
content-type: text/plain

thsi sis anice book

The stringBook() method would be invoked because it matches to the default "text/*" media type.
Now, if the client instead sends XML:

PGST /library
content-type: text/xmn

61

Chapter 17. JAX-RS Content Ne...

<book nanme="EJB 3.0" author="Bill Burke"/>

The jaxbBook() method would be invoked.

The @Produces is used to map a client request and match it up to the client's Accept header.
The Accept HTTP header is sent by the client and defines the media types the client prefers to
receive from the server.

@roduces("text/*")
@ath("/library")
public class Library {

@ET
@°r oduces("application/json")
public String getJSON() {...}

@EET
public String get() {...}

So, if the client sends:

GET /library
Accept: application/json

The getJSON() method would be invoked

@Consumes and @Produces can list multiple media types that they support. The client's Accept
header can also send multiple types it might like to receive. More specific media types are chosen
first. The client Accept header or @Produces @Consumes can also specify weighted preferences
that are used to match up requests with resource methods. This is best explained by RFC 2616
section 14.1 . Resteasy supports this complex way of doing content negotiation.

A variant in JAX-RS is a combination of media type, content-language, and content encoding
as well as etags, last modified headers, and other preconditions. This is a more complex form
of content negotiation that is done programmatically by the application developer using the
javax.ws.rs.Variant, VarianListBuilder, and Request objects. Request is injected via @Context.
Read the javadoc for more info on these.

62

URL-based negotiation

17.1. URL-based negotiation

Some clients, like browsers, cannot use the Accept and Accept-Language headers to negotiation
the representation's media type or language. RESTEasy allows you to map file name suffixes
like (.xml, .txt, .en, .fr) to media types and languages. These file name suffixes take the
place and override any Accept header sent by the client. You configure this using the
resteasy.media.type.mappings and resteasy.language.mappings context-param variables within
your web.xml

<web- app>
<di spl ay- nanme>Ar chet ype Created Web Applicati on</di spl ay- nane>
<cont ext - par an»
<par am name>r est easy. medi a. t ype. nappi ngs</ par am namne>
<paramval ue>htm : text/htm, json : application/json, xm : application/
xm </ par am val ue>
</ cont ext - par an>

<cont ext - par an»
<par am nane>r est easy. | anguage. mappi ngs</ par am nane>
<paramval ue>en : en-US, es : es, fr : fr</paramval ue>
</ cont ext - par an®

<servlet>
<servl et - nane>Rest easy</ ser vl et - nane>
<servl et -
cl ass>org. j boss. rest easy. pl ugi ns. server. servl et. H 't pServl et Di spat cher</
servl et -cl ass>
</servlet>

<servl et - mappi ng>
<servl et - nane>Rest easy</ ser vl et - nane>
<url-pattern>/*</url-pattern>
</ servl et - mappi ng>
</ web- app>

Mappings are a comma delimited list of suffix/mediatype or suffix/language mappings. Each
mapping is delimited by a ":". So, if you invoked GET /foo/bar.xml.en, this would be equivalent to
invoking the following request:

GET /f oo/ bar
Accept: application/xm

63

Chapter 17. JAX-RS Content Ne...

Accept - Language: en-US

The mapped file suffixes are stripped from the target URL path before the request is dispatched
to a corresponding JAX-RS resource.

17.2. Query String Parameter-based negotiation

RESTEasy can do content negotiation based in a parameter in query string. To enable this, the
web.xml can be configured like follow:

<web- app>
<di spl ay- nane>Ar chet ype Created Wb Application</di spl ay- nane>
<cont ext - par an»
<par am nane>r est easy. nedi a. t ype. par am nappi ng</ par am nane>
<par am val ue>soneNane</ par am val ue>
</ cont ext - par an>

<servl et >
<servl et - nane>Rest easy</ ser vl et - nane>
<servl et -
cl ass>org. j boss. resteasy. pl ugi ns. server. servl et. H t pSer vl et D spat cher </
servl et-cl ass>
</ servlet>

<servl et - mappi ng>
<servl et - name>Rest easy</ servl et - nane>
<url -pattern>/*</url-pattern>
</ servl et - mappi ng>
</ web- app>

The param-value is the name of the query string parameter that RESTEasy will use in the place
of the Accept header.

Invoking http://service.foo.com/resouce?someName=application/xml, will give the application/xml
media type the highest priority in the content negotiation.

In cases where the request contains both the parameter and the Accept header, the parameter
will be more relevant.

It is possible to left the param-value empty, what will cause the processor to look for a parameter
named 'accept'.

64

Chapter 18.

Chapter 18. Content Marshalling/
Providers

18.1. Default Providers and default JAX-RS Content
Marshalling

Resteasy can automatically marshal and unmarshal a few different message bodies.

Table 18.1.

Media Types Java Type

application/*+xml, text/*+xml, application/* JaxB annotated classes
+json, application/*+fastinfoset, application/

atom-+*

application/*+xml, text/*+xml org.w3c.dom.Document

[java.lang.String

[java.io.InputStream

text/plain primtives, java.lang.String, or any type that has
a String constructor, or static valueOf(String)
method for input, toString() for output

[javax.activation.DataSource

[java.io.File

[byte(]

application/x-www-form-urlencoded javax.ws.rs.core.MultivaluedMap

18.2. Content Marshalling with @Provider classes

The JAX-RS specification allows you to plug in your own request/response body reader and
writers. To do this, you annotate a class with @Provider and specify the @Produces types for
a writer and @Consumes types for a reader. You must also implement a MessageBodyReader/
Writer interface respectively. Here is an example.

The Resteasy ServletContextLoader will automatically scan your WEB-INF/lib and classes
directories for classes annotated with @Provider or you can manually configure them in web.xml.
See Installation/Configuration

65

Chapter 18. Content Marshalli...

18.3. Providers Utility Class

javax.ws.rs.ext.Providers is a simple injectable interface that allows you to look up
MessageBodyReaders, Writers, ContextResolvers, and ExceptionMappers. It is very useful, for
instance, for implementing multipart providers. Content types that embed other random content

types.

public interface Providers

{

/**

* Get a nessage body reader that matches a set of criteria. The set of

* readers is first filtered by conparing the supplied val ue of

* {@ode nmedi aType} with the value of each reader's

* {@ink javax.ws.rs. Consunes}, ensuring the supplied val ue of

* {@ode type} is assignable to the generic type of the reader, and

* elimnating those that do not match.

* The list of matching readers is then ordered with those with the best

* matching values of {@ink javax.ws.rs. Consunes} (x/y > XA7;* > */*)
* sorted first. Finally, the

* {@ink MessageBodyReader #i sReadabl e}

* nethod is called on each reader in order using the supplied criteria and
* the first reader that returns {@ode true} is selected and returned.

* @aramtype the class of object that is to be witten.
* @ar am nmedi aType the nedia type of the data that will be read.
* @aram genericType the type of object to be produced. E.g. if the
* nmessage body is to be converted into a nethod
paraneter, this will be
* the formal type of the method paraneter as returned by
* <code>C ass. get Generi cPar anet er Types</ code>.
* @aram annotations an array of the annotations on the declaration of the
* artifact that will be initialized with the produced
instance. E.g. if the
* nessage body is to be converted into a nethod
parameter, this will be
* the annotations on that paraneter returned by
* <code>C ass. get Par anet er Annot at i ons</ code>.
* @eturn a MessageBodyReader that matches the supplied criteria or null
* if none is found.
*/
<T> MessageBodyReader <T> get MessageBodyReader (Cl ass<T> type,
Type genericType, Annotation
annot ations[], Medi aType nmedi aType);

/**

66

Providers Utility Class

*

*

*/

Get a nessage body witer that matches a set of criteria. The set of
witers is first filtered by conparing the supplied val ue of

{@ode nedi aType} with the value of each witer's

{@ink javax.ws.rs. Produces}, ensuring the supplied val ue of

{@ode type} is assignable to the generic type of the reader, and
elimnating those that do not match.

The list of matching witers is then ordered with those with the best
mat chi ng val ues of {@ink javax.ws.rs.Produces} (Xx/y > X/* > *&HAT; *)
sorted first. Finally, the

{@ink MessageBodyWiter#i sWiteabl e}

method is called on each witer in order using the supplied criteria and
the first witer that returns {@ode true} is selected and returned.

@ar am nedi aType the nedia type of the data that will be witten.
@ar am type the class of object that is to be witten.
@ar am generi cType the type of object to be witten. E.g. if the
message body is to be produced froma field, this will be
the declared type of the field as returned by
<code>Fi el d. get Generi cType</ code>.
@ar am annot ati ons an array of the annotations on the declaration of the
artifact that will be witten. E.g. if the
message body is to be produced froma field, this will be
the annotations on that field returned by
<code>Fi el d. get Decl ar edAnnot at i ons</ code>.
@eturn a MessageBodyReader that matches the supplied criteria or null
if none is found.

<T> MessageBodyWiter<T> get MessageBodyWiter(Cl ass<T> type,

Type genericType, Annotation

annot ations[], MediaType nedi aType);

/**

*

*

*

*

*

*

*

*/

Get an exception mapping provider for a particular class of exception.
Returns the provi der whose generic type is the nearest superclass of
{@ode type}.

@aramtype the class of exception
@eturn an {@ink ExceptionMapper} for the supplied type or null if none
i s found.

<T extends Throwabl e> Excepti onMapper <T> get Excepti onMapper (Cl ass<T> type);

/**

*

*

Get a context resolver for a particular type of context and nedia type.
The set of resolvers is first filtered by conparing the supplied val ue of
{@ode nedi aType} with the value of each resolver's

{@ink javax.ws.rs. Produces}, ensuring the generic type of the context
resolver is assignable to the supplied value of {@ode contextType}, and
elimnating those that do not match. If only one resolver matches the

67

Chapter 18. Content Marshalli...

*

*

*

*

*

*

*

*

*

*

*/
<T> Cont ext Resol ver <T> get Cont ext Resol ver (C ass<T> cont ext Type,

criteria then it is returned. If nore than one resolver matches then the
list of matching resolvers is ordered with those with the best

mat chi ng val ues of {@ink javax.ws.rs.Produces} (Xx/y > xX/* > *&H#AT;*)
sorted first. A proxy is returned that delegates calls to

* { @i nk Cont ext Resol ver #get Cont ext (j ava. | ang. C ass)} to each mat chi ng cont ext

resolver in order and returns the first non-null value it obtains or null
if all matching context resolvers return null.

@ar am cont ext Type the class of context desired

* @aram nedi aType the nmedia type of data for which a context is required.

@eturn a matchi ng context resolver instance or null if no matching
context providers are found.

Medi aType nedi aType) ;

A Providers instance is injectable into MessageBodyReader or Writers:

@°r ovi der
@onsunes("mul tipart/fixed")
public class MiltipartProvider inplenents MessageBodyReader {

private @ontext Providers providers;

18.4. Configuring Document Marshalling

XML document parsers are subject to a form of attack known as the XXE (Xml eXternal
Entity) Attack (http://www.securiteam.com/securitynews/6D0100A5PU.html), in which expanding
an external entity causes an unsafe file to be loaded. For example, the document

<?xm version="1.0"?>

<! DOCTYPE f 00

[<IENTITY xxe SYSTEM "file:///etc/passwd">]>
<sear ch>

68

http://www.securiteam.com/securitynews/6D0100A5PU.html

Configuring Document Marshalling

<user >bi | | </ user >
<fil e>&xe; <file>
</ search>

could cause the passwd file to be loaded.

By default, Resteasy's built-in unmarshaller for org.w3c.dom.Document documents will not
expand external entities, replacing them by the empty string instead. It can be configured to
replace external entities by values defined in the DTD by setting the context parameter

to "true" in the web.xml file:

<cont ext - par an>
<par am nane>r est easy. docunent . expand. entity. ref erences</ param nanme>
<par am val ue>t r ue</ par am val ue>

</ cont ext - par an>

Another way of dealing with the problem is by prohibiting DTDs, which Resteasy does by default.
This behavior can be changed by setting the context parameter

to "false".

Documents are also subject to Denial of Service Attacks when buffers are overrun by large entities
or too many attributes. For example, if a DTD defined the following entities

<IENTITY foo 'foo' >

<IENTITY fool '&foo; & 00; &f 00; &f 00; &f 00; &f 00; &f 00; &f 00; &f 00; &f 00; ' >
<IENTITY fo02 ' & 001; & 001; & 001; &f 001; &f 001; & 001; &f 001; &f 0ol; & oo01l; &f ool; "' >
<IENTI TY f o003 ' & 002; & 002; & 002; & 002; &f 002; &f 002; &f 002; &f 002; &f 002; &f 002; ' >
<IENTITY fo04 ' & 003; &f 003; &f 003; &f 003; &f 003; &f 003; &f 003; &f 003; &f 003; &f 003; "' >
<IENTITY f o005 ' & 004; &f 004; & 004; &f 004; &f 004; & 004; &f 004; &f 004; &f 004; &f 004; "' >
<IENTI TY f 006 ' & 005; &f 005; & 005; & 005; &f 005; &f 005; &f 005; &f 005; &f 005; &f 005; ' >

then the expansion of &foo6; would result in 1,000,000 foos. By default, Resteasy will limit the
number of expansions and the number of attributes per entity. The exact behavior depends on
the underlying parser. The limits can be turned off by setting the context parameter

to "false".

69

70

Chapter 19.

Chapter 19. JAXB providers

As required by the specification, RESTEasy JAX-RS includes support for (un)marshalling
JAXB annotated classes. RESTEasy provides multiple JAXB Providers to address some subtle
differences between classes generated by XJC and classes which are simply annotated with
@XmlRootElement, or working with JAXBElement classes directly.

For the most part, developers using the JAX-RS API, the selection of which provider is invoked
will be completely transparent. For developers wishing to access the providers directly (which
most folks won't need to do), this document describes which provider is best suited for different
configurations.

A JAXB Provider is selected by RESTEasy when a parameter or return type is an object that
is annotated with JAXB annotations (such as @XmlIRootEntity or @XmIType) or if the type is a
JAXBElement. Additionally, the resource class or resource method will be annotated with either
a @Consumes or @Produces annotation and contain one or more of the following values:

o text/*+xml
 application/*+xml
 application/*+fastinfoset

 application/*+json

RESTEasy will select a different provider based on the return type or parameter type used in the
resource. This section describes how the selection process works.

@XmIRootEntity When a class is annotated with a @XmIRootElement annotation, RESTEasy
will select the JAXBXmIRootElementProvider. This provider handles basic marshaling and
unmarshalling of custom JAXB entities.

@XmIType Classes which have been generated by XJC will most likely not contain an
@XmlRootEntity annotation. In order for these classes to marshalled, they must be wrapped within
a JAXBElement instance. This is typically accomplished by invoking a method on the class which
serves as the XmIRegistry and is named ObjectFactory.

The JAXBXmITypeProvider provider is selected when the class is annotated with an XmlType
annotation and not an XmIRootElement annotation.

This provider simplifies this task by attempting to locate the XmlIRegistry for the target class. By
default, a JAXB implementation will create a class called ObjectFactory and is located in the same
package as the target class. When this class is located, it will contain a "create" method that takes
the object instance as a parameter. For example, if the target type is called "Contact”, then the
ObjectFactory class will have a method:

71

Chapter 19. JAXB providers

public JAXBElement createContact(Contact value) {..

JAXBElement<?> If your resource works with the JAXBElement class directly, the RESTEasy
runtime will select the JAXBElementProvider. This provider examines the ParameterizedType
value of the JAXBElement in order to select the appropriate JAXBContext.

19.1. JAXB Decorators

Resteasy's JAXB providers have a pluggable way to decorate Marshaller and Unmarshaller
instances. The way it works is that you can write an annotation that can trigger the
decoration of a Marshaller or Unmarshaller. Your decorators can do things like set Marshaller
or Unmarshaller properties, set up validation, stuff like that. Here's an example. Let's say
we want to have an annotation that will trigger pretty-printing, nice formatting, of an XML
document. If we were doing raw JAXB, we would set a property on the Marshaller of
Marshaller.JAXB_FORMATTED_OUTPUT. Let's write a Marshaller decorator.

First we define a annotation:

i mport org.jboss.resteasy. annot ati ons. Decor at or;

@rar get ({ El ement Type. TYPE, El ement Type. METHOD, El ement Type. PARAVETER,
El enent Type. FI ELD})
@Ret enti on(Ret enti onPol i cy. RUNTI MVE)
@ecor at or (processor = PrettyProcessor.class, target = Marshall er.cl ass)
public @nterface Pretty {}

To get this to work, we must annotate our @Pretty annotation with a meta-annotation called
@Decorator. The target() attribute must be the JAXB Marshaller class. The processor() attribute
is a class we will write next.

i mport org.jboss.resteasy.core.interception. DecoratorProcessor;
i mport org.jboss.resteasy. annot ati ons. Decor at eTypes;

i mport javax.xm . bind. Marshal |l er;

i mport javax.xm . bind. PropertyException;
i mport javax.ws.rs.core. MediaType;

i mport javax.ws.rs. Produces;

i mport java.l ang. annot ati on. Annot ati on;

72

Pluggable JAXBContext's with ContextResolvers

/-k*
* @ut hor Bill Burke
* @ersion $Revision: 1 $
S

@ecor at eTypes({"text/*+xm ", "application/*+xm"})

public class PrettyProcessor inplenents DecoratorProcessor<Marshaller, Pretty>

{

public Marshal |l er decorate(Marshaller target, Pretty annotation,
Class type, Annotation[] annotations, MdiaType nedi aType)

target.setProperty(Marshal | er. JAXB_FORMATTED CUTPUT, Bool ean. TRUE);

The processor implementation must implement the DecoratorProcessor interface and should also
be annotated with @DecorateTypes. This annotation specifies what media types the processor
can be used with. Now that we've defined our annotation and our Processor, we can use it on our
JAX-RS resource methods or JAXB types as follows:

@ET

@retty
@°r oduces("application/xm")

public SomeJAXBObj ect get() {...}

If you are confused, check the Resteasy source code for the implementation of @XmIHeader

19.2. Pluggable JAXBContext's with ContextResolvers

You should not use this feature unless you know what you're doing.

Based on the class you are marshalling/unmarshalling, RESTEasy will, by default create
and cache JAXBContext instances per class type. If you do not want RESTEasy
to create JAXBContexts, you can plug-in your own by implementing an instance of
javax.ws.rs.ext.ContextResolver

public interface ContextResol ver<T>

{
T get Cont ext (Cl ass<?> type);

}

73

Chapter 19. JAXB providers

@Provi der
@°r oduces("application/xm")
public class MyJAXBCont ext Resol ver inpl ements Cont ext Resol ver <JAXBCont ext >

{
JAXBCont ext get Cont ext (Cl ass<?> type)
{
i f (type. equal s(What ever Cl assl sOverri dedFor. cl ass)) return
JAXBCont ext . new nst ance(). . .;
}
}

You must provide a @Produces annotation to specify the media type the context is meant for.
You must also make sure to implement ContextResolver<JAXBContext>. This helps the runtime
match to the correct context resolver. You must also annotate the ContextResolver class with
@Provider.

There are multiple ways to make this ContextResolver available.

1. Return it as a class or instance from a javax.ws.rs.core.Application implementation
2. List it as a provider with resteasy.providers
3. Let RESTEasy automatically scan for it within your WAR file. See Configuration Guide

4. Manually add it via ResteasyProviderFactory.getinstance().registerProvider(Class) or
registerProviderinstance(Object)

19.3. JAXB + XML provider

Resteasy is required to provide JAXB provider support for XML. It has a few extra annotations
that can help code your app.

19.3.1. @XmlIHeader and @Stylesheet

Sometimes when outputting XML documents you may want to set an XML header. Resteasy
provides the @org.jboss.resteasy.annotations.providers.jaxb.XmlHeader annotation for this. For
example:

@ Root El enent
public static class Thing

{

private String nane;

74

@XmlHeader and @Stylesheet

public String getNanme()

{
return nane;
}
public void setNanme(String nane)
{
t hi s. name = nane;
}

@ath("/test")
public static class TestService

{

@=ET

@rat h("/ header")

@°r oduces("application/xm")

@ Header (" <?xnl - styl esheet type='text/xsl' href=" ${baseuri}foo.xsl' ?>")
public Thing get()

{
Thi ng thing = new Thing();
t hi ng. set Nane("bill");
return thing;

The @XmlHeader here forces the XML output to have an xml-stylesheet header. This header
could also have been put on the Thing class to get the same result. See the javadocs for more
details on how you can use substitution values provided by resteasy.

Resteasy also has a convenience annotation for stylesheet headers. For example:

@ Root El enent
public static class Thing

{

private String nane;
public String get Name()

{

return nane;

public void setNane(String nane)

75

Chapter 19. JAXB providers

thi s. nanme = nane;

@ath("/test")
public static class TestService

{

@ET

@at h("/styl esheet™)

@°r oduces("application/xm")

@Bt yl esheet (type="text/css", href="%{basepath}foo.xsl")

@unk
public Thing getStyle()

{
Thing thing = new Thing();
t hi ng. set Nane("bill");
return thing;

19.4. JAXB + JSON provider

RESTEasy allows you to marshall JAXB annotated POJOs to and from JSON. This provider wraps
the Jettison JSON library to accomplish this. You can obtain more information about Jettison and
how it works from:

http://jettison.codehaus.org/

To use this integration with Jettision you need to import the resteasy-jettison-provider Maven
module. Older versions of RESTEasy used to include this within the resteasy-jaxb-provider but
we decided to modularize it more.

Jettison has two mapping formats. One is BadgerFish the other is a Jettison Mapped Convention
format. The Mapped Convention is the default mapping.

For example, consider this JAXB class:

@Xm Root El enent (nane = "book")
public class Book

{

private String author;

private String | SBN,

private String title;

76

JAXB + JSON provider

publ i ¢ Book()

{
}

publi ¢ Book(String author,
{

t hi s. aut hor = aut hor;
this.| SBN = | SBN,
this.title = title;

@m El emrent
public String getAuthor()

{

return author;

String ISBN, String title)

}
public void setAuthor(String author)
{
t hi s. author = aut hor;
}
@ El enent

public String getl SBN()
{

return | SBN;
}
public void setl SBN(String | SBN)
{
this. 1 SBN = | SBN;
}

@m Attri bute
public String getTitle()

{

return title;

}
public void setTitle(String title)
{
this.title = title;
}
}

This is how the JAXB Book class would be marshalled to JSON using the BadgerFish Convention

77

Chapter 19. JAXB providers

{"book":
{
"@itle":"EJB 3.0",
“author":{"$":"Bi |l Burke"},
"I SBN': {"$":"596529260"}
}
}

Notice that element values have a map associated with them and to get to the value of the element,
you must access the "$" variable. Here's an example of accessing the book in Javascript:

var data = eval ("(" + xhr.responseText + ")");
docunent . get El enment Byl d("zone") . i nner HTM. = dat a. book. @i tl e;
docunent . get El enent Byl d("zone") . i nner HTM. += dat a. book. aut hor . $;

To use the BadgerFish Convention you must use the
@org.jboss.resteasy.annotations.providers.jaxb.json.BadgerFish annotation on the JAXB class
you are marshalling/unmarshalling, or, on the JAX-RS resource method or parameter:

@3adger Fi sh
@Xm Root El enent (nane = "book")
public class Book {...}

If you are returning a book on the JAX-RS method and you don't want to (or can't) pollute your
JAXB classes with RESTEasy annotations, add the annotation to the JAX-RS method:

@Badger Fi sh

@ET
publ i c Book getBook(...) {...}

If a Book is your input then you put it on the parameter:

78

JAXB + JSON provider

@aosT
public voi d newBook(@adger Fi sh Book book) {...}

The default Jettison Mapped Convention would return JSON that looked like this:

{ "book"
{
"@itle":"EJB 3.0",
"author":"Bi |l Burke",
"1 SBN': 596529260
}
}

Notice that the @XmlAttribute "title" is prefixed with the '@’ character. Unlike BadgerFish, the '$'
does not represent the value of element text. This format is a bit simpler than the BadgerFish
convention which is why it was chose as a default. Here's an example of accessing this in
Javascript:

var data = eval ("(" + xhr.responseText + ")");
docunent . get El enent Byl d("zone").i nnerHTM. = dat a. book. @i tl e;
docunent . get El enent Byl d("zone") . i nner HTM. += dat a. book. aut hor;

The Mapped Convention allows you to fine tune the JAXB mapping using the
@org.jboss.resteasy.annotations.providers.jaxb.json.Mapped annotation. You can provide an
XML Namespace to JSON namespace mapping. For example, if you defined your JAXB
namespace within your package-info.java class like this:

@ avax. xm . bi nd. annot at i on. Xml Schenma(nanespace="http://jboss. org/ books")
package org.j boss.resteasy.test.books;

You would have to define a JSON to XML namespace mapping or you would receive an exception
of something like this:

79

Chapter 19. JAXB providers

java.lang. || egal St ateException: Invalid JSON nanespace: http://jboss. org/ books
at

org. codehaus. j etti son. mapped. MappedNanespaceConventi on. get JSONNanespace(MappedNanespaceConvent
at

or g. codehaus. j etti son. mapped. MappedNanespaceConventi on. cr eat eKey(MappedNanespaceConventi on. j a\
at

org. codehaus. j etti son. mapped. MappedXM.StreamWiter. witeStartEl enent (MappedXM.StreamNiter. | a\

To fix this problem you need another annotation, @Mapped. You use the @Mapped annotation on
your JAXB classes, on your JAX-RS resource method, or on the parameter you are unmarshalling

i mport org.jboss.resteasy. annot ati ons. provi ders. jaxb.json. Mapped,;
i mport org.jboss. resteasy. annot ati ons. provi ders. jaxb.json. Xm NsMap;

@ET
@r oduces("application/json")
@vmapped(nanespaceMap = {

@ NsMap(nanespace = "http://]jboss. org/ books", jsonNanme = "books")
}
public Book get() {...}

Besides mapping XML to JSON namespaces, you can also force @ XmlAttribute's to be marshaled
as XMLElements.

@vbapped(attribut eAsEl ements={"title"})
@Xm Root El emrent (name = "book")
public class Book {...}

If you are returning a book on the JAX-RS method and you don't want to (or can't) pollute your
JAXB classes with RESTEasy annotations, add the annotation to the JAX-RS method:

@vapped(attribut eAsEl ements={"title"})
@ET

80

JAXB + FastinfoSet provider

publ i c Book getBook(...) {...}

If a Book is your input then you put it on the parameter:

@osT
public void newBook(@apped(attri but eAsEl enents={"title"}) Book book) {...}

19.5. JAXB + FastinfoSet provider

RESTEasy supports the FastinfoSet mime type with JAXB annotated classes. Fast infoset
documents are faster to serialize and parse, and smaller in size, than logically equivalent XML
documents. Thus, fast infoset documents may be used whenever the size and processing time
of XML documents is an issue. It is configured the same way the XML JAXB provider is so really
no other documentation is needed here.

To use this integration with Fastinfoset you need to import the resteasy-fastinfoset-provider Maven
module. Older versions of RESTEasy used to include this within the resteasy-jaxb-provider but
we decided to modularize it more.

19.6. Arrays and Collections of JAXB Objects

RESTEasy will automatically marshal arrays, java.util.Set's, and java.util.List's of JAXB objects to
and from XML, JSON, Fastinfoset (or any other new JAXB mapper Restasy comes up with).

@ Root El ement (name = "custoner")
@Xm Accessor Type(Xm AccessType. Fl ELD)
public class Custormer
{

@m El enrent

private String nane;

publ i ¢ Customer ()

{
}

public Customrer(String name)

{

81

Chapter 19. JAXB providers

t his. nane = nane;

public String getName()
{

return nane;

@ath("/")
public class MyResource
{
@ur
@at h("array")
@onsunes("application/xm")
public void put Custoners(Customer[] customers)
{
Assert.assertEqual s("bill", customers[O0].getName());
Assert. assert Equal s("rmoni ca", custoners[1].getName());

@ET

@rat h("set")

@°r oduces("application/xm")

publ i ¢ Set <Cust oner > get Cust oner Set ()

{
HashSet <Cust oner > set = new HashSet <Cust omer >() ;

set. add(new Customer("bill"));
set . add(new Custoner (" nonica"));

return set;

@ur

@ath("list")

@Consunes("application/xm")

public void put Custoners(List<Custoner> custoners)

{
Assert.assert Equal s("bill", custoners.get(0).getName());

Assert. assert Equal s("rmoni ca", custoners.get(1).getName());

The above resource can publish and receive JAXB objects. It is assumed that are wrapped in a
collection element

82

Arrays and Collections of JAXB Objects

<col | ecti on>
<cust oner ><nane>bi | | </ nane></ cust oner >
<cust oner ><nane>noni ca</ nane></ cust oner >
<col | ecti on>

You can change the namespace URI, namespace tag, and collection element name by using the
@org.jboss.resteasy.annotations.providers.jaxb.Wrapped annotation on a parameter or method

@rar get ({ El emrent Type. PARAMETER, El enent Type. METHOD})
@Ret enti on(Ret ent i onPol i cy. RUNTI MVE)
public @nterface Wapped

{

String element () default "collection";

String nanespace() default "http://jboss.org/resteasy”;

String prefix() default "resteasy";

}

So, if we wanted to output this XML

<foo:list xmns:foo="http://foo.o0rg">
<cust oner ><nane>bi | | </ nane></ cust oner >
<cust oner ><nane>noni ca</ hane></ cust oner >
</foo:list>

We would use the @Wrapped annotation as follows:

@=ET
@Path("list")
@°r oduces("application/xm")

@V apped(el ement="list", nanespace="http://foo.org",

publ i c List<Custoner> get Cust oner Set ()
{

prefix="foo")

83

Chapter 19. JAXB providers

Li st<Customer> |ist = new Arrayli st <Custoner>();
l'i st.add(new Custoner("bill"));
|'i st.add(new Custoner ("nonica"));

return list;

19.6.1. JSON and JAXB Collections/arrays

Resteasy supports using collections with JSON. It encloses lists, sets, or arrays of returned JAXB
objects within a simple JSON array. For example:

@Xm Root El enent
@Xm Accessor Type(Xm AccessType. Fl ELD)
public static class Foo

{
@ Attribute
private String test;
publ i c Foo()
{
}
public Foo(String test)
{
this.test = test;
}
public String getTest()
{
return test;
}
public void setTest(String test)
{
this.test = test;
}
}

This a List or array of this Foo class would be represented in JSON like this:

84

Maps of JAXB Objects

[{"foo":{"@est":"bill"}},{"foo":{"@est":"nonica}"}}]

It also expects this format for input

19.7. Maps of JAXB Objects

RESTEasy will automatically marshal maps of JAXB objects to and from XML, JSON, Fastinfoset
(or any other new JAXB mapper Restasy comes up with). Your parameter or method return type

must be a generic with a String as the key and the JAXB object's type.

@ Root El ement (nanmespace
public static class Foo

{

@m Attribute
private String nane;

publ i c Foo()

{
}

public Foo(String nane)

{

thi s. nanme = nane;

public String getName()
{

return nane;

@at h("/ map")
public static class MyResource

{

@osT
@°r oduces("application/
@onsumnes("appl i cati on/

= "http://foo.cont')

xm ")
xm ")

public Map<String, Foo> post(Map<String, Foo> map)

{

Assert.assert Equal s(2, map.size());

Assert . assert Not Nul |

(mep. get ("bill"));

85

Chapter 19. JAXB providers

Assert. assert Not Nul | (map. get (" nonica"));

Assert. assert Equal s(map.get ("bill").getName(), "bill");
Assert. assert Equal s(map. get (" noni ca") . get Name(), "nonica");
return nmap;

The above resource can publish and receive JAXB objects within a map. By default, they are
wrapped in a "map" element in the default namespace. Also, each "map" element has zero or
more "entry" elements with a "key" attribute.

<map>
<entry key="bill" xm ns="http://foo.com >
<foo name="bill"/>
</entry>

<entry key="nonica" xm ns="http://foo.com >
<f oo name="noni ca"/ >
</entry>
</ map>

You can change the namespace URI, namespace prefix and map, entry, and key element
and attribute names by using the @org.jboss.resteasy.annotations.providers.jaxb.WrappedMap
annotation on a parameter or method

@rar get ({ El enent Type. PARAVETER, El enent Type. METHOD})
@Ret enti on(Ret enti onPol i cy. RUNTI MVE)
public @nterface WappedMap

{

/**

* map el enent nane

*/

String map() default "map";

/**

* entry el ement nanme *

*/

String entry() default "entry";

/**

86

JSON and JAXB maps

* entry's key attribute nanme
*/
String key() default "key";

String nanespace() default

String prefix() default "";
}

So, if we wanted to output this XML

<hashnmap>
<hashentry hashkey="bill" xm ns:foo="http://foo.cont>
<f oo: foo name="bill"/>
</ hashentry>
</ map>

We would use the @WrappedMap annotation as follows:

@at h("/ map")
public static class MyResource

{
@ET
@°r oduces("application/xm")

@V appedMap(map="hashnmap", entry="hashentry", key="hashkey")
public Map<String, Foo> get()
{

return map;

19.7.1. JSON and JAXB maps

Resteasy supports using maps with JSON. It encloses maps returned JAXB objects within a simple
JSON map. For example:

87

Chapter 19. JAXB providers

@Xm Root El enent
@M Accessor Type(Xm AccessType. Fl ELD)
public static class Foo

{
@Xm Attribute
private String test;
publ i c Foo()
{
}
public Foo(String test)
{
this.test = test;
}
public String getTest()
{
return test;
}
public void setTest(String test)
{
this.test = test;
}
}

This a List or array of this Foo class would be represented in JSON like this:

{ "entryl" : {"foo":{"@est":"bill"}}, "entry2" : {"foo":{"@est":"nonica}"}}}

It also expects this format for input

19.7.2. Possible Problems with Jettison Provider

If you have the resteasy-jackson-provider-xxx.jar in your classpath, the Jackson JSON provider
will be triggered. This will screw up code that is dependent on the Jettison JAXB/JSon provider.
If you had been using the Jettison JAXB/Json providers, you must either remove Jackson from
your WEB-INF/lib or classpath, or use the @NoJackson annotation on your JAXB classes.

88

Interfaces, Abstract Classes, and JAXB

19.8. Interfaces, Abstract Classes, and JAXB

Some objects models use abstract classes and interfaces heavily. Unfortunately, JAXB doesn't
work with interfaces that are root elements and RESTEasy can't unmarshal parameters that
are interfaces or raw abstract classes because it doesn't have enough information to create a
JAXBContext. For example:

public interface |IFoo {}

@ Root El enent
public class Real Foo inplenments |Foo {}

@rat h("/jaxb")
public class MyResource {

@ur
@onsunes("application/xm")
public void put(lFoo foo) {...}

}

In this example, you would get an error from RESTEasy of something like "Cannot find a
MessageBodyReader for...". This is because RESTEasy does not know that implementations of
IFoo are JAXB classes and doesn't know how to create a JAXBContext for it. As a workaround,
RESTEasy allows you to use the JAXB annotation @XmlISeeAlso on the interface to correct the
problem. (NOTE, this will not work with manual, hand-coded JAXB).

@Xm SeeAl so(Real Foo. cl ass)
public interface |IFoo {}

The extra @XmISeeAlso on IFoo allows RESTEasy to create a JAXBContext that knows how to
unmarshal RealFoo instances.

19.9. Configurating JAXB Marshalling

As a consumer of XML datasets, JAXB is subject to a form of attack known as the XXE (Xml
eXternal Entity) Attack (http://www.securiteam.com/securitynews/6D0100A5PU.html), in which
expanding an external entity causes an unsafe file to be loaded. Preventing the expansion of
external entities is discussed in Section 18.4, “Configuring Document Marshalling”. The same
context parameter,

89

http://www.securiteam.com/securitynews/6D0100A5PU.html

Chapter 19. JAXB providers

applies to JAXB unmarshallers as well.

Section 18.4, “Configuring Document Marshalling” also discusses the prohibition of DTDs and the
imposition of limits on entity expansion and the number of attributes per element. The context
parameters

and

discussed there, and their default values, also apply to the representation of JAXB objects.

90

Chapter 20.

Chapter 20. Resteasy Atom Support

From W3.org (http://tools.ietf.org/html/rfc4287):

"Atom is an XML-based document format that describes lists of related information known as
"feeds". Feeds are composed of a number of items, known as "entries", each with an extensible
set of attached metadata. For example, each entry has a title. The primary use case that Atom
addresses is the syndication of Web content such as weblogs and news headlines to Web sites
as well as directly to user agents."

Atom is the next-gen RSS feed. Although it is used primarily for the syndication of blogs and news,
many are starting to use this format as the envelope for Web Services, for example, distributed
notifications, job queues, or simply a nice format for sending or receiving data in bulk from a
service.

20.1. Resteasy Atom API and Provider

RESTEasy has defined a simple object model in Java to represent Atom and uses JAXB to
marshal and unmarshal it. The main classes are in the org.jboss.resteasy.plugins.providers.atom
package and are Feed, Entry, Content, and Link. If you look at the source, you'd see that these are
annotated with JAXB annotations. The distribution contains the javadocs for this project and are
a must to learn the model. Here is a simple example of sending an atom feed using the Resteasy
API.

i mport org.jboss.resteasy. pl ugi ns. provi ders. at om Cont ent ;
i nport org.jboss.resteasy. plugins. provi ders.atom Entry;

i mport org.jboss.resteasy. plugins. provi ders. at om Feed,;

i mport org.jboss.resteasy. plugi ns. provi ders. at om Li nk;

i mport org.jboss.resteasy. plugi ns. provi ders. at om Person;

@rat h("at ont)
public class MyAtonService

@ET
@rat h("feed")
@roduces("application/atom-xm ")
public Feed get Feed() throws URI SyntaxException
{
Feed feed = new Feed();
feed. setld(new URI ("http://exanpl e.com 42"));
feed.setTitle("My Feed");
f eed. set Updat ed(new Date());
Link link = new Link();
l'ink.setHref(new URI ("http://1ocal host"));

91

Chapter 20. Resteasy Atom Support

link.setRel ("edit");

f eed. get Li nks() . add(!ink);

f eed. get Aut hor s() . add(new Person("Bi || Burke"));
Entry entry = new Entry();
entry.setTitle("Hello World");

Content content = new Content();

cont ent . set Type(Medi aType. TEXT_HTM__TYPE) ;
cont ent . set Text (" Not hi ng much");

entry. set Content (content);
feed.getEntries().add(entry);

return feed;

Because Resteasy's atom provider is JAXB based, you are not limited to sending atom objects
using XML. You can automatically re-use all the other JAXB providers that Resteasy has like
JSON and fastinfoset. All you have to do is have "atom+" in front of the main subtype. i.e.
@Produces("application/atom+json™) or @Consumes("application/atom+fastinfoset")

20.2. Using JAXB with the Atom Provider

The org.jboss.resteasy.plugins.providers.atom.Content class allows you to unmarshal and
marshal JAXB annotated objects that are the body of the content. Here's an example of sending
an Entry with a Customer object attached as the body of the entry's content.

@Xm Root El ement (namespace = "http://jboss. org/ Customer")
@Xm Accessor Type(Xm AccessType. Fl ELD)
public class Custoner

{
@ El ement
private String nane;

publ i ¢ Custoner ()

{
}
public Custoner(String nane)
{
thi s. nane = nane;
}

public String get Name()
{

return nane,

92

Using JAXB with the Atom Provider

@rat h("at ont')
public static class AtonServer

{
@ET
@ath("entry")
@°r oduces("application/atom-xm ")
public Entry getEntry()
{
Entry entry = new Entry();
entry.setTitle("Hello World");
Content content = new Content();
cont ent . set JAXBChj ect (new Custoner("bill"));
entry. set Content (content);
return entry;
}
}

The Content.setJAXBObject() method is used to tell the content object you are sending back a
Java JAXB object and want it marshalled appropriately. If you are using a different base format
other than XML, i.e. "application/atom+json”, this attached JAXB object will be marshalled into
that same format.

If you have an atom document as your input, you can also extract JAXB objects from Content using
the Content.getJAXBObject(Class clazz) method. Here is an example of an input atom document
and extracting a Customer object from the content.

@Pat h("at ont')
public static class Atonferver

{
@ur
@ath("entry")
@°r oduces("application/at om-xm ")
public void putCustoner(Entry entry)
{
Content content = entry.getContent();
Cust oner cust = content.get JAXBObj ect (Cust oner . cl ass);
}
}

93

94

Chapter 21.

Chapter 21. JSON Support via
Jackson

Besides the Jettision JAXB adapter for JSON, Resteasy also support integration with the Jackson
project. Many users find the output from Jackson much much nicer than the Badger format or
Mapped format provided by Jettison. Jackson lives at http://jackson.codehaus.org. It allows you
to easily marshal Java objects to and from JSON. It has a Java Bean based model as well as
JAXB like APIs. Resteasy integrates with the JavaBean model as described at this url: http://
jackson.codehaus.org/Tutorial.

While Jackson does come with its own JAX-RS integration. Resteasy expanded it a little. To
include it within your project, just add this maven dependency to your build. Resteasy supports
both Jackson 1.9.x and Jackson 2.2.x. Read further on how to use each.

21.1. Using Jackson 1.9.x Outside of JBoss AS7

If you're deploying Resteasy outside of JBoss AS7 add the resteasy jackson provder to your WAR
pom.xml build

<dependency>
<groupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>resteasy-jackson-provider</artifactld>
<version>3. 0. 9. Fi nal </ versi on>

</ dependency>

21.2. Using Jackson 1.9.x Inside of JBoss AS7

If you're deploying Resteasy with JBoss AS7, there's nothing you need to do except to make sure
you've updated your AS7 distribution with the latest and greatest Resteasy. See the installation
sectio of this documentation for more details.

21.3. Using Jackson 2.2.x Outside of JBoss AS7

If you're deploying Resteasy outside of JBoss AS7 add the resteasy jackson provder to your WAR
pom.xml build

<dependency>
<groupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>resteasy-jackson2-provider</artifactld>

95

Chapter 21. JSON Support via ...

<versi on>3. 0. 9. Fi nal </ versi on>
</ dependency>

21.4. Using Jackson 2.2.x Inside of JBoss AS7

If you want to use Jackson 2.2.x inside of JBoss AS7 you'll have to create a jboss-deployment-
structure.xml file within your WEB-INF directory. By default AS7 includes the Jackson 1.9.x JAX-
RS integration, so you'll want to exclude it from your dependencies, and add the jackson2 ones.

<j boss- depl oynent - struct ure>
<depl oyment >
<excl usi ons>
<nodul e nane="org.j boss.resteasy. resteasy-jackson-provider"/>
</ excl usi ons>
<dependenci es>
<modul e nane="org.j boss. rest easy. resteasy-jackson2-provider"
servi ces="inport"/>
</ dependenci es>
</ depl oynent >
</ j boss- depl oynment - st ruct ure>

21.5. Additional Resteasy Specifics

The first extra piece that Resteasy added to the integration was to support "application/*+json".
Jackson would only accept "application/json" and "text/json" as valid media types. This allows you
to create json-based media types and still let Jackson marshal things for you. For example:

@rat h("/ cust oners")
public class MyService {

@ET
@°r oduces("appl i cati on/ vnd. cust onmer +j son")
public Customer[] getCustomers() {}

Another problem that occurs is when you are using the Resteasy JAXB providers alongside
Jackson. You may want to use Jettison and JAXB to output your JSON instead of Jackson.

96

Additional Resteasy Specifics

In this case, you must either not install the Jackson provider, or use the annotation
@org.jboss.resteasy.annotations.providers.NoJackson on your JAXB annotated classes. For
example:

@m Root El enent
@\oJackson
public class Custoner {...}

@rat h("/ cust onmers")
public class MyService {

@ET
@°r oduces("appl i cati on/vnd. cust oner +j son")
public Custoner[] getCustoners() {}

If you can't annotate the JAXB class with @NoJackson, then you can use the annotation on a
method parameter. For example:

@m Root El enent
public class Customer {...}

@rat h("/ cust omers")
public class MyService {

@ET

@°r oduces("appl i cati on/vnd. cust oner +j son")
@oJackson
public Custoner[] getCustoners() {}

@CsT
@onsunes("appl i cati on/ vnd. cust oner +j son")
public void createCustoner(@oJackson Custoner[] custoners) {...}

97

Chapter 21. JSON Support via ...

21.6. Possible Conflict With JAXB Provider

If your Jackson classes are annotated with JAXB annotations and you have
the resteasy-jaxb-provider in your classpath, you may trigger the Jettision
JAXB marshalling code. To turn off the JAXB json marshaller use the
@org.jboss.resteasy.annotations.providers.jaxb.lgnoreMediaTypes("application/*+json") on your
classes.

21.7. JISONP Support

If you're using Jackson, Resteasy has JSONP [http://en.wikipedia.org/
wiki/JSONP] that you can turn on by adding the
provider org.j boss. resteasy. pl ugi ns. provi ders. j ackson. JacksonJsonpl nt er cept or
(Jackson2Jsonplnterceptor if you're using the Jackson2 provider) to your deployments. If the
media type of the response is json and a callback query parameter is given, the response will
be a javascript snippet with a method call of the method defined by the callback parameter. For
example:

GET /resources/stuff?cal | back=processSt uf f Response

will produce this response:

processSt uf f Response(<nonmal JSON body>)

This supports the default behavior of jQuery [http://api.jguery.com/jQuery.ajax/].

You can change the name of the callback parameter by setting the callbackQueryParameter
property.

21.8. Jackson JSON Decorator

If you are using the Jackson 2.2.x provider, Resteasy has provided a pretty-printing annotation
simliar with the one in JAXB provider:

org.j boss. resteasy. annot ati ons. provi ders. j ackson. For mat t ed

Here is an example:

98

http://en.wikipedia.org/wiki/JSONP
http://en.wikipedia.org/wiki/JSONP
http://en.wikipedia.org/wiki/JSONP
http://api.jquery.com/jQuery.ajax/
http://api.jquery.com/jQuery.ajax/

Jackson JSON Decorator

@sET
@r oduces("application/json")
@ath("/formatted/ {id}")

@ormatted
public Product getFornmattedProduct ()
{

return new Product (333, "robot");

As the example shown above, the @Formatted annotation will enable the underlying Jackson
option "SerializationFeature.INDENT_OUTPUT".

99

100

Chapter 22.

Chapter 22. JSON Support via Java
EE 7 JSON-P API

No, this is not the JSONP you are thinking oftl JISON-P is a new Java EE 7 JSON parsing API.
Horrible name for a new JSON parsing API! What were they thinking? Anyways, Resteasy has a
provider for it. If you are using Wildfly, it is required by Java EE 7 so you will have it automatically
bundled. Otherwise, use this maven dependency.

<dependency>
<groupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>resteasy-json-p-provider</artifactld>
<ver si on>3. 0. 9. Fi nal </ ver si on>

</ dependency>

It has built in support for JsonObject, JsonArray, and JsonStructure as request or response
entities. It should not conflict with Jackson or Jettison if you have that in your path too.

101

102

Chapter 23.

Chapter 23. Multipart Providers

Resteasy has rich support for the "multipart/*" and "multipart/form-data” mime types. The multipart
mime format is used to pass lists of content bodies. Multiple content bodies are embedded in one
message. "multipart/form-data” is often found in web application HTML Form documents and is
generally used to upload files. The form-data format is the same as other multipart formats, except
that each inlined piece of content has a name associated with it.

RESTEasy provides a custom API for reading and writing multipart types as well as marshalling
arbitrary List (for any multipart type) and Map (multipart/form-data only) objects

23.1. Input with multipart/mixed

When writing a JAX-RS service, RESTEasy provides an interface that allows you to read in any
multipart mime type. org.jboss.resteasy.plugins.providers.multipart.Multipartinput

package org.jboss.resteasy. plugins. providers. multipart;

public interface Miltipartl nput

{
Li st <l nput Part> get Parts();
String getPreanbl e();
/1 You nust call close to delete any tenporary files created
/1 Otherwise they will be deleted on garbage collection or on JVMexit
voi d cl ose();
}

public interface |nputPart
{
Mul tival uedMap<String, String> getHeaders();
String getBodyAsString();
<T> T getBody(C ass<T> type, Type genericType) throws | CException;
<T> T get Body(org.j boss.resteasy. util.GenericType<T> type) throws | OExcepti on;

Medi aType get Medi aType();

bool ean i sCont ent TypeFr omVessage() ;

103

Chapter 23. Multipart Providers

Multipartinput is a simple interface that allows you to get access to each part of the multipart
message. Each part is represented by an InputPart interface. Each part has a set of headers
associated with it You can unmarshall the part by calling one of the getBody() methods. The Type
genericType parameter can be null, but the Class type parameter must be set. Resteasy will find
a MessageBodyReader based on the media type of the part as well as the type information you
pass in. The following piece of code is unmarshalling parts which are XML into a JAXB annotated
class called Customer.

@ath("/multipart")
public class M/Service

{
@ur
@Consunes("mul ti part/m xed")
public void put(Miltipartlnput input)
{
Li st <Custoner> custonmers = new Arraylist...;
for (InputPart part : input.getParts())
{
Custoner cust = part.getBody(Custoner.class, null);
custoners. add(cust);
}
i nput . cl ose();
}
}

Sometimes you may want to unmarshall a body part that is sensitive to generic type metadata.
In this case you can use the org.jboss.resteasy.util.GenericType class. Here's an example of
unmarshalling a type that is sensitive to generic type metadata.

@ath("/multipart")
public class M/Service

{
@ur
@Consunes("mul tipart/m xed")
public void put(Miltipartlnput input)
{
for (InputPart part : input.getParts())
{
Li st <Cust omer > cust = part.get Body(new Generi cType>Li st >Cust onmer <<()
{H;
}
i nput.close();
}
}

104

java.util.List with multipart data

Use of GenericType is required because it is really the only way to obtain generic type information
at runtime.

23.2. java.util.List with multipart data

If your body parts are uniform, you do not have to manually unmarshall each and every part. You
can just provide a java.util.List as your input parameter. It must have the type it is unmarshalling
with the generic parameter of the List type declaration. Here's an example again of unmarshalling
a list of customers.

@ath("/nmultipart")
public class M/Service

{
@ur
@onsunes("mul ti part/ m xed")
public void put(List<Custoner> custoners)
{
}
}

23.3. Input with multipart/form-data

When writing a JAX-RS service, RESTEasy provides an interface that allows you
to read in multipart/form-data mime type. "multipart/form-data” is often found in web
application HTML Form documents and is generally used to upload files. The form-
data format is the same as other multipart formats, except that each inlined piece
of content has a name associated with it. The interface used for form-data input is
org.jboss.resteasy.plugins.providers.multipart. MultipartFormDatalnput

public interface MiltipartFornDat al nput extends Miltipartlnput

{
@pepr ecat ed
Map<String, |nputPart> getFornData();

Map<String, List<InputPart>> getFornDataVap();

<T> T get FornDat aPart (String key, C ass<T> rawlype, Type genericType) throws
| OExcepti on;

105

Chapter 23. Multipart Providers

<T> T get FormDat aPart (Stri ng key, GenericType<T> type) throws | OException;

It works in much the same way as Multipartinput described earlier in this chapter.

23.4. java.util.Map with multipart/form-data

With form-data, if your body parts are uniform, you do not have to manually unmarshall each and
every part. You can just provide a java.util.Map as your input parameter. It must have the type it
is unmarshalling with the generic parameter of the List type declaration. Here's an example of of
unmarshalling a Map of Customer objects which are JAXB annotated classes.

@ath("/nmultipart")
public class M/Service

{
@ur
@onsunes("mul tipart/formdata")
public void put(Map<String, Customer> custoners)
{
}
}

23.5. Input with multipart/related

When writing a JAX-RS service, RESTEasy provides an interface that allows you to read in
multipart/related mime type. A multipart/related is used to indicate that message parts should not
be considered individually but rather as parts of an aggregate whole. One example usage for
multipart/related is to send a web page complete with images in a single message. Every multipart/
related message has a root/start part that references the other parts of the message. The parts are
identified by their "Content-ID" headers. multipart/related is defined by RFC 2387. The interface
used for related input is org.jboss.resteasy.plugins.providers.multipart.MultipartRelatedInput

public interface MiltipartRel atedl nput extends Miltipartl nput
{

String getType();

String getStart();

String getStartlnfo();

106

Output with multipart

I nput Part get Root Part () ;

Map<String, |nputPart> getRel atedMap();

It works in much the same way as Multipartinput described earlier in this chapter.

23.6. Output with multipart

RESTEasy provides a simple API to output multipart data.

package org.jboss.resteasy. plugins. providers. multipart;
public class MiltipartQutput
{
public QutputPart addPart(Cbject entity, Medi aType medi aType)

publ i ¢ Qut put Part addPart ((oject entity, GenericType type, Medi aType nmedi aType)

public CQutputPart addPart(Cbject entity, Cass type, Type genericType,
Medi aType nedi aType)

public List<CQutputPart> getParts()
public String getBoundary()

public void setBoundary(String boundary)

}
public class QutputPart
{
public Multival uedMap<String, Object> getHeaders()
public Object getEntity()
public C ass get Type()
public Type get GenericType()
publ i c Medi aType get Medi aType()
}

107

Chapter 23. Multipart Providers

When you want to output multipart data it is as simple as creating a MultipartOutput object and
calling addPart() methods. Resteasy will automatically find a MessageBodyWriter to marshall your
entity objects. Like Multipartinput, sometimes you may have marshalling which is sensitive to
generic type metadata. In that case, use GenericType. Most of the time though passing in an
Object and its MediaType is enough. In the example below, we are sending back a "multipart/
mixed" format back to the calling client. The parts are Customer objects which are JAXB annotated
and will be marshalling into "application/xml".

@ath("/multipart")
public class M/Service

{
@ET
@roduces("mul tipart/m xed")
public MiltipartCutput get()

{
Mul ti part Qut put out put = new MultipartQutput();

out put . addPart (new Custoner ("bill"), MediaType. APPLI CATI ON_XM._TYPE) ;
out put . addPart (new Cust orer (" noni ca"), Medi aType. APPLI CATI ON_XM__TYPE) ;
return output;

23.7. Multipart Output with java.util.List

If your body parts are uniform, you do not have to manually marshall each and every part or even
use a MultipartOutput object.. You can just provide a java.util.List. It must have the generic type
it is marshalling with the generic parameter of the List type declaration. You must also annotate
the method with the @PartType annotation to specify what media type each part is. Here's an
example of sending back a list of customers back to a client. The customers are JAXB objects

@ath("/multipart")
public class M/Service

{
@BET
@roduces("mul ti part/ m xed")
@rart Type("application/xm")
public List<Customner> get()
{
}

}

108

Output with multipart/form-data

23.8. Output with multipart/form-data

RESTEasy provides a simple API to output multipart/form-data.

package org.jboss.resteasy. plugins. providers. multipart;

public class MiltipartFornDat aCut put extends Milti part Qut put

{
publi ¢ QutputPart addFornData(String key, Cbject entity, MediaType nedi aType)

public QutputPart addFornData(String key, Object entity, GCenericType type,
Medi aType nedi aType)

public CQutputPart addFornData(String key, Object entity, Cass type, Type
generi cType, MediaType nedi aType)

public Map<String, CutputPart> getFornData()

When you want to output multipart/form-data it is as simple as creating a MultipartFormDataOutput
object and calling addFormData() methods. Resteasy will automatically find a MessageBodyWriter
to marshall your entity objects. Like Multipartinput, sometimes you may have marshalling which
is sensitive to generic type metadata. In that case, use GenericType. Most of the time though
passing in an Object and its MediaType is enough. In the example below, we are sending back a
"multipart/form-data" format back to the calling client. The parts are Customer objects which are
JAXB annotated and will be marshalling into "application/xml".

@ath("/forn')
public class M/Service

{
@EET
@roduces("mul tipart/formdata")
public Milti partFor nDat aCut put get ()
{
Mul ti part For nDat aCut put out put = new Ml ti part For mDat aQut put () ;
out put . addPart ("bill", new Custoner("bill"),
Medi aType. APPLI CATI ON_XM__TYPE) ;
out put . addPar t (" noni ca", new Custoner ("nonica"),

Medi aType. APPLI CATI ON_XM._TYPE) ;
return out put)

109

Chapter 23. Multipart Providers

23.9. Multipart FormData Output with java.util.Map

If your body parts are uniform, you do not have to manually marshall each and every part or even
use a MultipartFormDataOutput object.. You can just provide a java.util.Map. It must have the
generic type it is marshalling with the generic parameter of the Map type declaration. You must
also annotate the method with the @PartType annotation to specify what media type each part
is. Here's an example of sending back a list of customers back to a client. The customers are
JAXB objects

@ath("/nmultipart")
public class M/Service

{
@ET
@roduces("mul tipart/formdata")
@Part Type("application/xm")
public Map<String, Custoner> get()
{
}

}

23.10. Output with multipart/related

RESTEasy provides a simple API to output multipart/related.

package org.jboss.resteasy. plugins. providers. multipart;
public class MiltipartRel at edQut put extends Ml ti part Qut put
{

publ i c QutputPart getRootPart ()

public QutputPart addPart(Cbject entity, MediaType nedi aType,
String contentld, String contentTransfer Encodi ng)

public String getStartlnfo()

public void setStartinfo(String startlnfo)

110

@MultipartForm and POJOs

When you want to output multipart/related it is as simple as creating a MultipartRelatedOutput
object and calling addPart() methods. The first added part will be used as the root part of the
multipart/related message. Resteasy will automatically find a MessageBodyWriter to marshall your
entity objects. Like Multipartinput, sometimes you may have marshalling which is sensitive to
generic type metadata. In that case, use GenericType. Most of the time though passing in an
Object and its MediaType is enough. In the example below, we are sending back a "multipart/
related" format back to the calling client. We are sending a html with 2 images.

@ath("/rel ated")
public class MyService
{
@EET
@Produces("nul ti part/rel ated")
public MiltipartRel at edCut put get ()
{
Mul ti part Rel at edQut put out put = new Ml ti part Rel at edQut put () ;
output.setStartinfo("text/htm");

Map<String, String> nediaTypeParaneters = new LinkedHashMap<Stri ng,
String>();

nmedi aTypePar anet ers. put ("charset", "UTF-8");
nmedi aTypePar anet ers. put ("type", "text/htm");
out put

.addPart (

"<ht ml ><body>\ n"
+ "This is ne: <ing src='cid: http://exanple.org/ne.png />\n"
+ "
This is you: <ing src='cid: http://exanple.org/you.png />\n"

+ "</ body></ht m >",
new Medi aType("text", "htm", nedi aTypeParaneters),
"<nmynessage. xm @xanpl e. org>", "8bit");

out put . addPart ("// binary octets for nme png",
new Medi aType("i mage", "png"), "<http://exanple.org/ me.png>",
"binary");

out put.addPart ("// binary octets for you png", new Medi aType(
"image", "png"),
"<http://exanpl e.org/you. png>", "binary");

cl i ent. put Rel at ed(out put);

return out put;

23.11. @MultipartForm and POJOs

If you have a exact knowledge of your multipart/form-data packets, you can
map them to and from a POJO class to and from multipart/form-data using the

111

Chapter 23. Multipart Providers

@org.jboss.resteasy.annotations.providers.multipart.MultipartForm annotation and the JAX-RS
@FormParam annotation. You simple define a POJO with at least a default constructor and
annotate its fields and/or properties with @FormParams. These @FormParams must also be
annotated with @org.jboss.resteasy.annotations.providers.multipart.PartType if you are doing
output. For example:

public class CustonerProbl enform {
@-or mPar an(" cust oner ")
@rart Type("application/xm ")
private Custoner custoner;

@-or mPar am(" pr obl ent")
@art Type("text/plain")
private String problem

public Customer getCustoner() { return custoner; }

public void setCustoner(Custonmer cust) { this.customer = cust; }
public String getProblem() { return problem }

public void setProblen(String problenm) { this.problem= problem }

After defining your POJO class you can then use it to represent multipart/form-data. Here's an
example of sending a CustomerProblemForm using the RESTEasy client framework

@rat h("portal ")
public interface CustomerPortal {

@rat h("issues/{id}")

@Consunes("mul ti part/formdata")

@ur

public void putProbl en{ @ul tipart Form Cust oner Probl enFor m
@rat hParam("id") int id);

Custoner Portal portal = ProxyFactory.create(CustonerPortal.class, "http://
exanpl e. cont') ;
Cust oner Probl enfFor m f orm = new Cust oner Pr obl enfor n() ;
formsetCustoner(...);
formsetProblen(...);

portal . put Probl em(form 333);

112

XML-binary Optimized Packaging (Xop)

You see that the @MultipartForm annotation was used to tell RESTEasy that the object has
@FormParam and that it should be marshalled from that. You can also use the same object to
receive multipart data. Here is an example of the server side counterpart of our customer portal.

@rat h("portal ")
public class CustomerPortal Server {

@Pat h("issues/ {id})
@Consunes("mul ti part/formdata")
@ur
public void putlssue(@ultipartForm Custoenr Probl enfFor m
@Pat hParan("id") int id) {
wite to database...

23.12. XML-binary Optimized Packaging (Xop)

RESTEasy supports Xop messages packaged as multipart/related. What does this mean? If you
have a JAXB annotated POJO that also holds some binary content you may choose to send it in
such a way where the binary does not need to be encoded in any way (neither base64 neither
hex). This results in faster transport while still using the convenient POJO. More about Xop can
be read here: http://www.w3.0rg/TR/xop10/. Now lets see an example:

First we have a JAXB annotated POJO to work with. @XmIMimeType tells JAXB the mime type
of the binary content (its not required to do XOP packaging but it is recommended to be set if
you know the exact type):

@Xm Root El emrent
@M Accessor Type(Xm AccessType. Fl ELD)
public static class Xop {

private Custoner bill;

private Custoner nonica;

@m M nmeType(Medi aType. APPLI CATI ON_OCTET_STREAM
private byte[] nyBinary;

@m M neType(Medi aType. APPLI CATI ON_OCTET_STREAM
private Dat aHandl er nyDat aHandl er;

// nmethods, other fields ...

113

Chapter 23. Multipart Providers

In the above POJO myBinary and myDataHandler will be processed as binary attachments while
the whole Xop object will be sent as xml (in the places of the binaries only their references will
be generated). javax.activation.DataHandler is the most general supported type so if you need
an java.io.InputStream or a javax.activation.DataSource you need to go with the DataHandler.
Some other special types are supported too: java.awt.Image and javax.xml.transform.Source.
Let's assume that Customer is also JAXB friendly POJO in the above example (of course it can
also have binary parts). Now lets see a an example Java client that sends this:

/] our client interface:
@at h("m me")
public static interface Miultipartdient {
@Pat h("xop")
@\ur
@onsunes(Ml ti part Const ant s. MULTI PART_RELATED)
public void put Xop(@opWthMiltipartRel ated Xop bean);

/'l Somewhere using it:
{
MultipartClient client = ProxyFactory.create(MiltipartCient.class,
"http://ww. exanpl e. org");
Xop xop = new Xop(new Customer("bill"), new Customner("nonica"),
"Hello Xop World!".getBytes("UTF-8"),
new Dat aHandl er (new Byt eArr ayDat aSour ce(" Hel | o Xop Worl d!". get Byt es(" UTF-8"),
Medi aType. APPLI CATI ON_OCTET_STREAM))) ;
cl i ent. put Xop(xop);

We used @Consumes(MultipartConstants.MULTIPART_RELATED) to tell RESTEasy that we
want to send multipart/related packages (that's the container format that will hold our Xop
message). We used @XopWithMultipartRelated to tell RESTEasy that we want to make Xop
messages. So we have a POJO and a client service that is willing to send it. All we need now
a server that can read it:

@at h("/ m ne")
public class XopService {
@ur
@rat h("xop")
@onsunes(Ml ti part Const ant s. MULTI PART_RELATED)
public void put XopWthMul ti partRel at ed(@opW t hMul ti partRel ated Xop xop) {
/1 do very inportant things here

114

Note about multipart parsing and working with other frameworks

We used @Consumes(MultipartConstants.MULTIPART_RELATED) to tell RESTEasy that we
want to read multipart/related packages. We used @ XopWithMultipartRelated to tell RESTEasy
that we want to read Xop messages. Of course we could also produce Xop return values but we
would than also need to annotate that and use a Produce annotation, too.

23.13. Note about multipart parsing and working with
other frameworks

There are a lot of frameworks doing multipart parsing automatically with the
help of filters and interceptors. Like org.jposs.seam.web.MultipartFilter in Seam or
org.springframework.web.multipart. MultipartResolver in Spring. However the incoming multipart
request stream can be parsed only once. Resteasy users working with multipart should make sure
that nothing parses the stream before Resteasy gets it.

23.14. Overwriting the default fallback content type for
multipart messages

By default if no Content-Type header is present in a part, "text/plain; charset=us-ascii" is used as
fallback. This is the value defined by the MIME RFC. However for example some web clients (like
most, if not all, web browsers) do not send Content-Type headers for all fields in a multipart/form-
data request (only for the file parts). This can cause character encoding and unmarshalling errors
on the server side. To correct this there is an option to define an other, non-rfc compliant fallback
value. This can be done dynamically per request with the PreProcessinterceptor infrastructure of
RESTEasy. In the following example we will set "*/*; charset=UTF-8" as the new default fallback:

i mport org.jboss. resteasy. plugins.providers.nultipart.|nputPart;

@r ovi der

@ser ver | nt er cept or

public class Content TypeSetterPreProcessorlnterceptor inplenents
PreProcessl nterceptor {

publ i c Server Response preProcess(H t pRequest request,
Resour ceMet hod nethod) throws Failure, WebApplicati onException {
request.set Attri bute(l nput Part. DEFAULT_CONTENT_TYPE_PROPERTY,
"*[*. charset =UTF-8");
return null;

}

115

Chapter 23. Multipart Providers

23.15. Overwriting the content type for multipart
messages

Using an interceptor and the I nput Part . DEFAULT_CONTENT_TYPE_PROPERTY
attribute allows setting a default Content-Type, but it is also possible
to override the Content-Type, if any, in any input part by
calling org.jboss.resteasy. plugins.providers.nultipart.InputPart.setMdiaType().
For example:

@GosT

@rat h("query")

@onsunes(Medi aType. MILTI PART_FORM DATA)

@r oduces(Medi aType. TEXT_PLAI N)

publ i ¢ Response set Medi aType(Multipartlnput input) throws | CException

{
Li st<I nput Part> parts = input.getParts();

I nput Part part = parts.get(0);
part. set Medi aType(Medi aType. val ue ("appl i cati on/ foo+xm "));
String s = part.getBody(String.class, null);

23.16. Overwriting the default fallback charset for
multipart messages

Sometimes, a part may have a Content-Type header with no charset parameter.
If the InputPart. DEFAULT _CONTENT TYPE PROPERTY property is set and the value
has a charset parameter, that value will be appended to an existing Content-
Type header that has no charset parameter. It is also possible to specify a
default charset using the constant | nputPart. DEFAULT_CHARSET_PROPERTY (actual value
"resteasy.provider.multipart.inputpart.defaultCharset"):

i mport org.jboss.resteasy. plugins.providers. multipart.|nputPart;

@r ovi der

@per ver | nt er cept or

public class Content TypeSetterPreProcessorlnterceptor inplenents
PreProcessl nterceptor {

publ i c Server Response preProcess(HttpRequest request,
Resour ceMet hod met hod) throws Fail ure, WebApplicationException {

116

Overwriting the default fallback charset for multipart messages

request.set Attribute(l nputPart. DEFAULT_CHARSET PROPERTY, "UTF-8");
return null;

}

If both | nput Part . DEFAULT_CONTENT_TYPE_PROPERTY and
| nput Part . DEFAULT _CHARSET PROPERTY are set, then the value of
| nput Part. DEFAULT_CHARSET_PROPERTY will override any charset in the value of
| nput Part . DEFAULT_CONTENT_TYPE_PROPERTY.

117

118

Chapter 24.

Chapter 24. YAML Provider

Since 3.0.9.Final release, resteasy comes with built in support for YAML using the SnakeYAML
library. To enable YAML support, you need to drop in the SnakeYaml 1.8 jar and the resteasy-
yaml-provider.jar (whatever the current version is) in RestEASY's classpath.

SnakeYaml jar file can either be downloaded from Google code at http://code.google.com/p/
snakeyaml/downloads/list

Or if you use maven, the SnakeYaml jar is available through SonaType public repositories and
included using this dependency:

<dependency>
<gr oupl d>or g. yam </ gr oupl d>
<artifactld>snakeyanl </artifactld>
<ver si on>1. 8</ver si on>

</ dependency>

When starting resteasy look out in the logs for a line stating that the YamlProvider has been added
- this indicates that resteasy has found the Jyaml jar:

2877 Main INFO org.jboss.resteasy.plugins.providers.RegisterBuiltin - Adding YamIProvider
The Yaml provider recognises three mime types:

* text/x-yaml
* text/yaml

« application/x-yaml

This is an example of how to use Yaml in a resource method.

i mport javax.ws.rs. Consunes;
i mport javax.ws.rs. CET;
i mport javax.ws.rs. Path;

ws

i mport javax.ws.rs. Produces;

@ath("/yam ")
public class Yan Resource

119

Chapter 24. YAML Provider

@EET

@roduces("text/x-yam ")

public MyCbject get MyObject() {
return createMyQbject();

120

Chapter 25.

Chapter 25. String marshalling for
String based @*Param

@PathParam, @QueryParam, @MatrixParam, @FormParam, and @HeaderParam are
represented as strings in a raw HTTP request. The specification says that these types of injected
parameters can be converted to objects if these objects have a valueOf(String) static method
or a constructor that takes one String parameter. What if you have a class where valueOf() or
this string constructor doesn't exist or is inappropriate for an HTTP request? JAX-RS 2.0 has the
javax.ws.rs.ext.ParamConverterProvider to help in this situation. See javadoc for more details.

121

122

Chapter 26.

Chapter 26. Responses using
javax.ws.rs.core.Response

You can build custom responses using the javax.ws.rs.core.Response and ResponseBuilder
classes. If you want to do your own streaming, your entity response must be an implementation
of javax.ws.rs.core.StreamingOutput. See the java doc for more information.

123

124

Chapter 27.

Chapter 27. Exception Handling

27.1. Exception Mappers

ExceptionMappers are custom, application provided, components that can catch thrown
application exceptions and write specific HTTP responses. The are classes annotated with
@Provider and that implement this interface

package javax.ws.rs.ext;

i mport javax.ws.rs. core. Response;

/**

* Contract for a provider that nmaps Java exceptions to
{@ink javax.ws.rs. core. Response}. An inplenentation of this interface

*

nmust
* pbe annotated with {@ink Provider}.

*

* @ee Provider

* @ee javax.Wws.rs.core. Response

*/

public interface Excepti onMapper <E>
{

/**

* Map an exception to a {@ink javax.ws.rs. core. Response}.

*

* (@ar am exception the exception to map to a response

* @eturn a response mapped fromthe supplied exception
*/

Response t oResponse(E exception);

}

When an application exception is thrown it will be caught by the JAX-RS runtime. JAX-RS will
then scan registered ExceptionMappers to see which one support marshalling the exception type
thrown. Here is an example of ExceptionMapper

@r ovi der
public cl ass EJBExcept i onMapper i npl enent s
Except i onMapper <j avax. ej b. EJBExcept i on>

125

Chapter 27. Exception Handling

Response toResponse(EJBException exception) {
return Response. status(500). build();

}

You register ExceptionMappers the same way you do MessageBodyReader/Writers. By
scanning, through the resteasy provider context-param (if you're deploying via a WAR file), or
programmatically through the ResteasyProviderFactory class.

27.2. Resteasy Built-in Internally-Thrown Exceptions

Resteasy has a set of built-in exceptions that are thrown by it when it encounters errors during
dispatching or marshalling. They all revolve around specific HTTP error codes. You can find them
in RESTEasy's javadoc under the package org.jboss.resteasy.spi. Here's a list of them:

Table 27.1.

Exception HTTP Code Description

ReaderException 400 All exceptions thrown from
MessageBodyReaders are
wrapped within this exception.
If there is no ExceptionMapper
for the wrapped exception
or if the exception isn't
a WebApplicationException,
then resteasy will return a 400
code by default.

WriterException 500 All exceptions thrown
from MessageBodyWriters are
wrapped within this exception.
If there is no ExceptionMapper
for the wrapped exception
or if the exception isn't
a WebApplicationException,
then resteasy will return a 400
code by default.

0.j.r.plugins.providers.jaxb.JAXBAD@marshalException The JAXB providers
(XML and Jettison) throw
this exception on reads.
They may be wrapping

126

Overriding Resteasy Builtin Exceptions

Exception HTTP Code Description

JAXBExceptions. This class
extends ReaderException

0.j.r.plugins.providers.jaxb.JAXBddarshalException The JAXB providers
(XML and Jettison) throw
this exception on writes.
They may be wrapping
JAXBExceptions. This class
extends WriterException

ApplicationException N/A This exception wraps all
exceptions thrown from
application code. It functions
much in the same way as
InvocationTargetException. If
there is an ExceptionMapper
for wrapped exception, then
that is used to handle the

request.
Failure N/A Internal Resteasy. Not logged
LoggableFailure N/A Internal Resteasy error.
Logged
DefaultOptionsMethodExceptionN/A If the user invokes HTTP

OPTIONS and no JAX-
RS method for it, Resteasy
provides a default behavior by
throwing this exception

27.3. Overriding Resteasy Builtin Exceptions

You may override Resteasy built-in exceptions by writing an ExceptionMapper for the exception.
For that matter, you can write an ExceptionMapper for any thrown exception including
WebApplicationException

127

128

Chapter 28.

Chapter 28. Configuring Individual
JAX-RS Resource Beans

If you are scanning your path for JAX-RS annotated resource beans, your beans will be registered
in per-request mode. This means an instance will be created per HTTP request served. Generally,
you will need information from your environment. If you are running within a servlet container
using the WAR-file distribution, in Beta-2 and lower, you can only use the JNDI lookups to obtain
references to Java EE resources and configuration information. In this case, define your EE
configuration (i.e. ejb-ref, env-entry, persistence-context-ref, etc...) within web.xml of the resteasy
WAR file. Then within your code do jndi lookups in the java:comp namespace. For example:

web.xml

<ej b-ref>
<ej b-ref - nane>ej b/ f oo</ ej b-r ef - nane>

</ejb-ref>
resource code:

@ath("/")
public class MyBean {

public Object getSomethi ngFromindi () {
new | nitial Cont ext.| ookup("java: conp/ ej b/ foo0");

You can also manually configure and register your beans through the Registry. To do this in a
WAR-based deployment, you need to write a specific ServletContextListener to do this. Within the
listener, you can obtain a reference to the registry as follows:

public class MyManual Config inpl ements Servl et Cont ext Li st ener

129

Chapter 28. Configuring Indiv...

public void contextlnitialized(ServletContextEvent event)

{

Regi stry registry = (Regi stry)
event . get Servl et Context (). getAttri bute(Registry.class. get Nane());

Please also take a look at our Spring Integration as well as the Embedded Container's Spring
Integration

130

Chapter 29.

Chapter 29. GZIP Compression/
Decompression

Resteasy has automatic GZIP decompression support. If the client framework or a JAX-RS service
receives a message body with a Content-Encoding of "gzip", it will automatically decompress it.
The client framework automatically sets the Accept-Encoding header to be "gzip, deflate”. So you
do not have to set this header yourself.

Resteasy also supports automatic compression. If the client framework is sending a request or
the server is sending a response with the Content-Encoding header set to "gzip", Resteasy will do
the compression. So that you do not have to set the Content-Encoding header directly, you can
use the @org.jboss.resteasy.annotation.GZIP annotation.

@ath("/")
public interface MyProxy {

@onsunes("application/xm")
@utr
public void put (@l P O der order);

In the above example, we tag the outgoing message body, order, to be gzip compressed. You
can use the same annotation to tag server responses

@ath("/")

public class MyService {

@=ET
@°r oduces("application/xm")

@zl P
public String getData() {...}

131

132

Chapter 30.

Chapter 30. CORS

Resteasy has a Cont ai ner Request Fi | t er that can be used to handle CORS preflight and actual
requests. org.j boss.resteasy. plugins.interceptors. CorsFilter. You must allocate this
and register it as a singleton provider from your Application class. See the javadoc or its various
settings.

CorsFilter filter = new CorsFilter();
filter.getAllowedOigins().add("http://1ocal host");

133

134

Chapter 31.

Chapter 31. Content-Range Support

Resteasy supports Range requests for j ava. i o. Fi | e response entities.

@ath("/")

public class Resource {
@ET
@ath("file")

@r oduces("text/plain")
public File getFile()
{

return file;

Response response = client.target(generateURL("/file")).request()
. header ("Range", "1-4").get();
Assert . assert Equal s(response. get Status(), 206);
Assert. assert Equal s(4, response.getlLength());
System out. println("Content-Range: " + response. get Header Stri ng(" Cont ent -
Range")) ;

135

136

Chapter 32.

Chapter 32. Resteasy Caching
Features

Resteasy provides numerous annotations and facilities to support HTTP caching semantics.
Annotations to make setting Cache-Control headers easier and both server-side and client-side
in-memory caches are available.

32.1. @Cache and @NoCache Annotations

Resteasy provides an extension to JAX-RS that allows you to automatically set Cache-Control
headers on a successful GET request. It can only be used on @GET annotated methods. A
successful @GET request is any request that returns 200 OK response.

package org.jboss.resteasy. annotations. cache;

public @nterface Cache

{
int maxAge() default -1;
int sMaxAge() default -1;
bool ean noStore() default false;
bool ean noTransform() default false;
bool ean nmust Reval i date() default fal se;
bool ean proxyRevalidate() default false;
bool ean isPrivate() default false;

}

public @nterface NoCache

{
String[] fields() default {};

}

While @Cache builds a complex Cache-Control header, @NoCache is a simplified notation to
say that you don't want anything cached i.e. Cache-Control: nocache.

These annotations can be put on the resource class or interface and specifies a default cache
value for each @GET resource method. Or they can be put individually on each @GET resource
method.

137

Chapter 32. Resteasy Caching ...

32.2. Client "Browser" Cache

Resteasy has the ability to set up a client-side, browser-like, cache. You can use it with the
Client Proxy Framework, or with raw ClientRequests. This cache looks for Cache-Control headers
sent back with a server response. If the Cache-Control headers specify that the client is allowed
to cache the response, Resteasy caches it within local memory. The cache obeys max-age
requirements and will also automatically do HTTP 1.1 cache revalidation if either or both the
Last-Modified and/or ETag headers are sent back with the original response. See the HTTP 1.1
specification for details on how Cache-Control or cache revalidation works.

It is very simple to enable caching. Here's an example of using the client cache with the Client
Proxy Framework

@rat h("/orders")
public interface OrderServiceCient {

@ath("{id}")
@ET
@°r oduces("application/xm")

public Order getOrder(@athParan("id") String id);

To create a proxy for this interface and enable caching for that proxy requires only a few simple
steps:

i mport org.jboss.resteasy.client.ProxyFactory;
i mport org.jboss.resteasy.client.cache. CacheFactory;
i mport org.jboss. resteasy. client.cache. Li ghtwei ght Browser Cache;

public static void main(String[] args) throws Exception

{

Regi sterBuil tin. regi ster(ResteasyProvi derFactory. getlnstance());
Order Serviced i ent proxy = ProxyFactory.create(O derServicedient.class,
gener at eBaseUr | ());

/'l This line enables caching
Li ght wei ght Browser Cache cache = CacheFact ory. makeCacheabl e(pr oxy);

If you are using the ClientRequest class to make invocations rather than the proxy framework,
it is just as easy

138

Local Server-Side Response Cache

i mport org.jboss. resteasy.client.ProxyFactory;
i mport org.jboss. resteasy. client.cache. CacheFactory;
i nport org.jboss.resteasy.client.cache. Li ght wei ght Br owser Cache;

public static void main(String[] args) throws Exception

{
Regi sterBuil tin. regi ster(ResteasyProvi derFactory. getlnstance());
/'l This line enables caching
Li ght wei ght Br owser Cache cache = new Li ght wei ght Browser Cache() ;
Cl i ent Request request = new Cl i ent Request ("http://exanpl e. con orders/333");
CacheFact ory. nakeCacheabl e(request, cache);
}

The LightweightBrowserCache, by default, has a maximum 2 megabytes of caching space. You
can change this programmatically by callings its setMaxBytes() method. If the cache gets full, the
cache completely wipes itself of all cached data. This may seem a bit draconian, but the cache
was written to avoid unnecessary synchronizations in a concurrent environment where the cache
is shared between multiple threads. If you desire a more complex caching solution or if you want
to plug in a thirdparty cache please contact our resteasy-developers list and discuss it with the
community.

32.3. Local Server-Side Response Cache

Resteasy has a server-side cache that can sit in front of your JAX-RS services. It automatically
caches marshalled responses from HTTP GET JAX-RS invocations if, and only if your JAX-RS
resource method sets a Cache-Control header. When a GET comes in, the Resteasy Server
Cache checks to see if the URI is stored in the cache. If it does, it returns the already marshalled
response without invoking your JAX-RS method. Each cache entry has a max age to whatever
is specified in the Cache-Control header of the initial request. The cache also will automatically
generate an ETag using an MD5 hash on the response body. This allows the clientto do HTTP 1.1
cache revalidation with the IF-NONE-MATCH header. The cache is also smart enough to perform
revalidation if there is no initial cache hit, but the jax-rs method still returns a body that has the
same ETag.

The cache is also automatically invalidated for a particular URI that has PUT, POST,
or DELETE invoked on it. You can also obtain a reference to the cache by injecting a
org.jboss.resteasy.plugins.cache.ServerCache via the @Context annotation

@Cont ext
Server Cache cache;

139

Chapter 32. Resteasy Caching ...

@ET
public String get(@ontext ServerCache cache) {...}

To set up the server-side cache you must register an instance
of org.jpboss.resteasy.plugins.cache.server.ServerCacheFeature via your Application
getSingletons() or getClasses() methods. The underlying cache is Infinispan. By default, Resteasy
will create an Infinispan cache for you. Alternatively, you can create and pass in an instance of your
cache to the ServerCacheFeature constructor. You can also configure Infinispan by specifying
various context-param variables in your web.xml. First, if you are using Maven you must depend
on the resteasy-cache-core artifact:

<dependency>
<groupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>resteasy-cache-core</artifactld>
<ver si on>3. 0. 9. Fi nal </ ver si on>

</ dependency>

The next thing you should probably do is set up the Infinispan configuration in your web.xml.

<web- app>
<cont ext - par an>
<par am nane>server.request. cache.infinispan. config.file</param nane>
<par am val ue>i nfi ni span. xm </ param val ue>
</ cont ext - par an>

<cont ext - par anp
<par am nanme>server.request. cache. i nfi ni span. cache. nane</ par am nane>
<par am val ue>MyCache</ par am val ue>

</ cont ext - par an

</ web- app>

server.request.cache.infinispan.config.file can either be a classpath or a file path.
server.request.cache.infinispan.cache.name is the name of the cache you want to reference that
is declared in the config file.

140

Chapter 33.

Chapter 33. Filters and Interceptors

JAX-RS 2.0 has two different concepts for interceptions: Filters and Interceptors. Filters are mainly
used to modify or process incoming and outgoing request headers or response headers. They
execute before and after request and response processing.

33.1. Server Side Filters

On the server-side you have two different types of filters. ContainerRequestFilters run before
your JAX-RS resource method is invoked. ContainerResponseFilters run after your JAX-
RS resource method is invoked. As an added caveat, ContainerRequestFilters come in two
flavors: pre-match and post-matching. Pre-matching ContainerRequestFilters are designated
with the @PreMatching annotation and will execute before the JAX-RS resource method
is matched with the incoming HTTP request. Pre-matching filters often are used to modify
request attributes to change how it matches to a specific resource method (i.e. strip .xml
and add an Accept header). ContainerRequestFilters can abort the request by calling
ContainerRequestContext.abortWith(Response). A filter might want to abort if it implements a
custom authentication protocol.

After the resource class method is executed, JAX-RS will run all ContainerResponseFilters. These
filters allow you to modify the outgoing response before it is marshalling and sent to the client. So
given all that, here's some pseudo code to give some understanding of how things work.

/'l execute pre match filters
for (ContainerRequestFilter filter : preMatchFilters) {
filter.filter(requestContext);
if (isAborted(requestContext)) {
sendAbortionTod i ent (request Cont ext);
return;

}

// match the HTTP request to a resource class and net hod
Jaxr sMet hod net hod = mat chiet hod(r equest Cont ext) ;

/! Execute post match filters
for (ContainerRequestFilter filter : postMatchFilters) ({
filter.filter(requestContext);
if (isAborted(requestContext)) {
sendAborti onTod i ent (request Cont ext) ;
return;

/| execute resource class method
nmet hod. execut e(request);

141

Chapter 33. Filters and Inter...

/1 execute response filters
for (ContainerResponseFilter filter : responseFilters) {
filter.filter(requestContext, responseContext);

33.2. Client Side Filters

On the client side you also have two types of filters: ClientRequestFilter and ClientResponseFilter.
ClientRequestFilters run before your HTTP request is sent over the wire to the server.
ClientResponsekFilters run after a response is received from the server, but before the response
body is unmarshalled. ClientRequestFilters are also allowed to abort the execute of the request
and provide a canned response without going over the wire to the server. ClientResponseFilters
can modfiy the Response object before it is handed back to application code. Here's some pseudo
code to illustrate things.

/'l execute request filters
for (ClientRequestFilter filter : requestFilters) {
filter.filter(requestContext);
if (isAborted(requestContext)) {
return request Cont ext. get Abort edResponsej ect () ;

/'l send request over the wire
response = sendRequest (request);

/| execute response filters
for (ClientResponseFilter filter : responseFilters) {
filter.filter(requestContext, responseContext);

33.3. Reader and Writer Interceptors

While filters modify request or response headers, interceptors deal with message bodies.
Interceptors are executed in the same call stack as their corresponding reader or writer.
ReaderInterceptors wrap around the execution of MessageBodyReaders. WriterInterceptors wrap
around the execution of MessageBodyWriters. They can be used to implement a specific content-
encoding. They can be used to generate digital signatures or to post or pre-process a Java object
model before or after it is marshalled.

142

Per Resource Method Filters and Interceptors

33.4. Per Resource Method Filters and Interceptors

Sometimes you want a filter or interceptor to only run for a specific resource method. You
can do this in two different ways: register an implementation of DynamicFeature or use the
@NameBinding annotation. The DynamicFeature interface is executed at deployment time
for each resource method. You just use the Configurable interface to register the filters and
interceptors you want for the specific resource method. @NameBinding works a lot like CDI
interceptors. You annotate a custom annotation with @NameBinding and then apply that custom
annotation to your filter and resource method

@NaneBi ndi ng
public @nterface Dolt {}

@ol t
public class MyFilter inplements ContainerRequestFilter {...}

@at h("/root")
public class MyResource {

@ET
@ol t
public String get() {...}

33.5. Ordering

Ordering is accomplished by using the @BindingPriority annotation on your filter or interceptor
class.

143

144

Chapter 34.

Chapter 34. Asynchronous HTTP
Request Processing

Asynchronous HTTP Request Processing is a relatively new technique that allows you to process
a single HTTP request using non-blocking 1/0 and, if desired in separate threads. Some refer to
it as COMET capabilities. The primary use case for Asynchronous HTTP is in the case where the
client is polling the server for a delayed response. The usual example is an AJAX chat client where
you want to push/pull from both the client and the server. These scenarios have the client blocking
a long time on the server’s socket waiting for a new message. What happens in synchronous
HTTP where the server is blocking on incoming and outgoing I/O is that you end up having a thread
consumed per client connection. This eats up memory and valuable thread resources. Not such
a big deal in 90% of applications (in fact using asynchronous processing may actually hurt your
performance in most common scenarios), but when you start getting a lot of concurrent clients that
are blocking like this, there’s a lot of wasted resources and your server does not scale that well.

The JAX-RS 2.0 specification has added asynchronous HTTP support via two classes. The
@Suspended annotation, and AsyncResponse interface.

Injecting an AsynchronousResponse as a parameter to your jax-rs methods tells Resteasy that
the HTTP request/response should be detached from the currently executing thread and that the
current thread should not try to automatically process the response.

The AsyncResponse is the callback object. The act of calling one of the resume() methods will
cause a response to be sent back to the client and will also terminate the HTTP request. Here is
an example of asynchronous processing:

i mport javax.ws.rs. Suspend;
i nport javax.ws.rs.core. Asynchr onousResponse;

@at h("/")
public class SinpleResource

{

@=ET

@rat h(" basi c")

@°r oduces("text/plain")

publ i c voi d get Basi c(@uspended fi nal AsyncResponse response) throws Exception

{
Thread t = new Thread()

{
@verride
public void run()
{

145

Chapter 34. Asynchronous HTTP...

try

Response jaxrs =
Response. ok("basi c").type(Medi aType. TEXT_PLAIN). bui | d();
response. resune(j axrs);

}
catch (Exception e)
{
e.printStackTrace();
}
}
}
t.start();

AsyncResponse also has other methods to cancel the execution. See javadoc for more details.

NOTE: The old Resteasy proprietary API for async http has been deprecated and may be removed
as soon as Resteasy 3.1.

146

Chapter 35.

Chapter 35. Asynchronous Job
Service

The Resteasy Asynchronous Job Service is an implementation of the Asynchronous Job pattern
defined in O'Reilly's "Restful Web Services" book. The idea of it is to bring asynchronicity to a
synchronous protocol.

35.1. Using Async Jobs

While HTTP is a synchronous protocol it does have a faint idea of asynchronous invocations.
The HTTP 1.1 response code 202, "Accepted” means that the server has received and accepted
the response for processing, but the processing has not yet been completed. The Resteasy
Asynchronous Job Service builds around this idea.

POST http://exanpl e. conl nyservi ce?asynch=true

For example, if you make the above post with the asynch query parameter set to true, Resteasy
will return a 202, "Accepted” response code and run the invocation in the background. It also
sends back a Location header with a URL pointing to where the response of the background
method is located.

HTTP/ 1.1 202 Accepted
Location: http://exanple.com asynch/jobs/ 3332334

The URI will have the form of:

/asynch/jobs/{job-id}?wait={m|lisconds}| nowait=true

You can perform the GET, POST, and DELETE operations on this job URL. GET returns whatever
the JAX-RS resource method you invoked returned as a response if the job was completed. If
the job has not completed, this GET will return a response code of 202, Accepted. Invoking GET
does not remove the job, so you can call it multiple times. When Resteasy's job queue gets full,
it will evict the least recently used job from memory. You can manually clean up after yourself by
calling DELETE on the URI. POST does a read of the JOB response and will remove the JOB
it has been completed.

147

Chapter 35. Asynchronous Job ...

Both GET and POST allow you to specify a maximum wait time in milliseconds, a "wait" query
parameter. Here's an example:

POST http://exanpl e. coml asynch/j obs/ 122?wai t =3000

If you do not specify a "wait" parameter, the GET or POST will not wait at all if the job is not
complete.

NOTE! While you can invoke GET, DELETE, and PUT methods asynchronously, this breaks the
HTTP 1.1 contract of these methods. While these invocations may not change the state of the
resource if invoked more than once, they do change the state of the server as new Job entries with
each invocation. If you want to be a purist, stick with only invoking POST methods asynchronously.

Security NOTE! Resteasy role-based security (annotations) does not work with the Asynchronous
Job Service. You must use XML declarative security within your web.xml file. Why? Itis impossible
to implement role-based security portably. In the future, we may have specific JBoss integration,
but will not support other environments.

35.2. Oneway: Fire and Forget

Resteasy also supports the notion of fire and forget. This will also return a 202, Accepted response,
but no Job will be created. This is as simple as using the oneway query parameter instead of
asynch. For example:

POST http://exanpl e. com nyservi ce?oneway=t rue

Security NOTE! Resteasy role-based security (annotations) does not work with the Asynchronous
Job Service. You must use XML declaritive security within your web.xml file. Why? It is impossible
to implement role-based security portably. In the future, we may have specific JBoss integration,
but will not support other environments.

35.3. Setup and Configuration

You must enable the Asynchronous Job Service in your web.xml file as it is not turned on by
default.

<web- app>
<I-- enabl e the Asynchronous Job Service -->
<cont ext - par ank
<par am nane>r est easy. async. j ob. servi ce. enabl ed</ par am nane>

148

Setup and Configuration

<par am val ue>t r ue</ par am val ue>
</ cont ext - par an®

<I-- The next context parameters are all optional
Their default values are shown as exanpl e paramval ues -->

<I-- How many jobs results can be held in nenory at once? -->
<cont ext - par ank
<par am nane>r est easy. async. j ob. servi ce. max. j ob. resul t s</ par am nane>
<par am val ue>100</ par am val ue>
</ cont ext - par an>

<l-- Maximumwait tine on a job when a client is querying for it -->
<cont ext - par an>
<par am name>r est easy. async. j ob. servi ce. max. wai t </ par am nanme>
<par am val ue>300000</ par am val ue>
</ cont ext - par an

<I-- Thread pool size of background threads that run the job -->
<cont ext - par ank
<par am nane>r est easy. async. j ob. servi ce. t hread. pool . si ze</ par am nane>
<par am val ue>100</ par am val ue>
</ cont ext - par an>

<I-- Set the base path for the Job uris -->

<cont ext - par an>
<par am name>r est easy. async. j ob. servi ce. base. pat h</ par am nanme>
<par am val ue>/ asynch/ j obs</ param val ue>

</ cont ext - par an>

<listener>
<l i stener-cl ass>
org.j boss. resteasy. pl ugi ns. server. servl et. Rest easyBoot strap
</listener-class>
</listener>

<servl et >
<servl et - nane>Rest easy</ ser vl et - nane>
<servl et-cl ass>
org.j boss. resteasy. plugi ns. server.servlet. HtpServl et D spatcher
</ servlet-class>
</servlet>

<servl et - mappi ng>
<servl et - name>Rest easy</ ser vl et - nane>
<url-pattern>/*</url-pattern>

</ servl et - mappi ng>

</ web- app>

149

Chapter 35. Asynchronous Job ...

150

Chapter 36.

Chapter 36. Embedded Containers

Resteasy has a few different plugins for different embedabble HTTP and/or Servlet containers if
use Resteasy in a test environment, or within an environment where you do not want a Servlet
engine dependency.

36.1. Undertow

Undertow is a new Servlet Container that is used by Wildfly (JBoss Community Server). You can
embed Undertow as you wish. Here's a a test that shows it in action.

i mport io0.undertow. servlet. api.Depl oynment| nfo;

i mport org.jboss.resteasy. pl ugi ns. server. undert ow. Undert owJaxr sServer;
i mport org.jboss.resteasy.test. TestPortProvider;

i nport org.junit.Afterd ass;

i mport org.junit.Assert;

i mport org.junit.Befored ass;

i mport org.junit. Test;

i mport javax.
i mport j avax.
i mport javax.
i nport j avax.
i mport j avax.

.rs. ApplicationPat h;

.rs. GET;

.rs. Pat h;

. rs. Produces;
.rs.client.dient;

i mport javax.ws.rs.client.dientBuilder;
i mport javax.ws.rs.core.Application;

i nport java.util.HashSet;

i mport java.util.Set;

55550505 5

/**
* @ut hor Bill Burke
* @ersion $Revision: 1 $
3]

public class UndertowTest

{

private static UndertowlaxrsServer server;

@ath("/test")
public static class Resource
{
@EET
@r oduces("text/plain")
public String get()
{

return "hello world";

151

Chapter 36. Embedded Containers

@\ppl i cationPat h("/base")
public static class MyApp extends Application

{
@verride
public Set<d ass<?>> get d asses()
{
HashSet <Cl ass<?>> cl asses = new HashSet <Cl ass<?>>();
cl asses. add(Resour ce. cl ass);
return cl asses;
}
}

@Bef or ed ass
public static void init() throws Exception

{

server = new UndertowJaxrsServer().start();

@\fterd ass
public static void stop() throws Exception

{

server.stop();

@rest
public void testApplicationPath() throws Exception
{

server. depl oy(MyApp. cl ass);

Client client = dientBuilder.newCient();

String val = client.target(TestPortProvider.generateURL("/base/test’

.request().get(String.class);
Assert.assert Equal s("hello world", val);
client.close();

@rest
public void testApplicationContext() throws Exception
{

server. depl oy(M/App. cl ass, "/root");

Client client = dientBuilder.newdient();

String val = client.target(TestPortProvider.generateURL("/root/test"’

.request ().get(String.class);
Assert. assert Equal s("hello world", val);
client.close();

@rest

"))

"))

152

Sun JDK HTTP Server

public void testDepl oynentlnfo() throws Exception

{
Depl oynentInfo di = server.undert owDepl oyrment (MyApp. cl ass);

di . set ContextPath("/di");

di . set Depl oynent Name(" DI ") ;

server. depl oy(di);

Client client = dientBuilder.newCient();

String val = client.target(TestPortProvider.generateURL("/di/base/test"))
.request().get(String.class);

Assert.assert Equal s("hello world", val);

client.close();

36.2. Sun JDK HTTP Server

The Sun JDK comes with a simple HTTP server implementation
(com.sun.net.httpserver.HttpServer) which you can run Resteasy on top of.

Htt pServer httpServer = HttpServer.create(new | net Socket Address(port), 10);
cont ext Bui | der = new Ht t pCont ext Bui | der () ;

cont ext Bui | der. get Depl oynent (). get Act ual Resour ced asses() . add(Si npl eResour ce. cl ass) ;
Ht t pCont ext context = contextBuil der. bi nd(httpServer);
context.getAttributes().put("some.config.info", "42");
httpServer.start();

cont ext Bui | der. cl eanup();
htt pServer. st op(0);

Create your HttpServer the way you want then use the
org.jboss.resteasy.plugins.server.sun.http.HttpContextBuilder to initialize Resteasy and bind
it to an HttpContext. The HttpContext attributes are available by injecting in a
org.jboss.resteasy.spi.ResteasyConfiguration interface using @Context within your provider and
resource classes.

Maven project you must include is:

<dependency>
<groupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>resteasy-jdk-http</artifactld>

153

Chapter 36. Embedded Containers

<versi on>3. 0. 9. Fi nal </ versi on>
</ dependency>

36.3. TJWS Embeddable Servlet Container

RESTeasy integrates with the TIWS Embeddable Servlet container. It comes with this distribution,
or you can reference the Maven artifact. You must also provide a servlet APl dependency as well.

<dependency>
<groupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>tjws</artifactld>
<versi on>3. 0. 9. Fi nal </ versi on>

</ dependency>

<dependency>
<gr oupl d>j avax. servl et </ gr oupl d>
<artifactld>servlet-api</artifactld>
<versi on>2. 5</ versi on>

</ dependency>

From the distribution, move the jars in resteasy-jaxrs.war/WEB-INF/lib into your classpath. You
must both programmatically register your JAX-RS beans using the embedded server's Registry.
Here's an example:

@at h("/")
public class MyResource {

@ET
public String get() { return "hello world"; }

public static void nain(String[] args) throws Exception

{

TIWSEnbeddedJaxrsServer tjws = new TIJWSEnbeddedJaxrsServer();

tjws. set Port (8080);

tjws.start();

tjws. get Regi stry().addPer Request Resour ce(Rest Easy485Resour ce. cl ass) ;
}

154

Netty

The server can either host non-encrypted or SSL based resources, but not both. See the Javadoc
for TIWSEmbeddedJaxrsServer as well as its superclass TJWSServletServer. The TIWS website
is also a good place for information.

If you want to use Spring, see the SpringBeanProcessor. Here's a pseudo-code example

public static void nain(String[] args) throws Exception

{
final TIJWBEnbeddedJaxrsServer tjws = new TIJWSEnbeddedJaxrsServer();
tjws. set Port(8081);

tjws.start();
org.j boss. resteasy. pl ugi ns. server. servl et. Spri ngBeanProcessor
processor = new SpringBeanProcessor(tjws.get Depl oynent (). getRegistry(),
tjws. get Depl oyment (). get Factory();
Confi gur abl eBeanFactory factory = new Xm BeanFactory(...);
fact ory. addBeanPost Processor (processor) ;

36.4. Netty

Resteasy has integration with the popular Netty project as well..

public static void start(ResteasyDepl oynent depl oynent) throws Exception
{

netty = new NettyJaxrsServer();

netty. set Depl oynment (depl oynment) ;

netty. setPort(TestPortProvider.getPort());

netty. set Root ResourcePat h("");

netty. set SecurityDomain(null);

netty.start();

Maven project you must include is:

<dependency>
<groupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>resteasy-netty</artifactld>
<version>3.0.9. Fi nal </ versi on>

155

Chapter 36. Embedded Containers

</ dependency>

156

Chapter 37.

Chapter 37. Server-side Mock
Framework

Although RESTEasy has an Embeddable Container, you may not be comfortable with the idea of
starting and stopping a web server within unit tests (in reality, the embedded container starts in milli
seconds), or you might not like the idea of using Apache HTTP Client or java.net.URL to test your
code. RESTEasy provides a mock framework so that you can invoke on your resource directly.

i mport org.jboss.resteasy. nock. *;

Di spat cher di spatcher = MdckDi spat cher Factory. creat eDi spat cher();
PQJOResour ceFact ory noDef aul t s = new

PQJOResour ceFact ory(Locat i ngResour ce. cl ass);
di spat cher. get Regi stry() . addResour ceFact ory(noDef aul ts);

MockHt t pRequest request = MockHt t pRequest. get("/ 1 ocating/ basic");
MockHt t pResponse response = new MockHtt pResponse();
di spat cher. i nvoke(request, response);

Assert.assert Equal s(H t pSer vl et Response. SC_OK, response.getStatus());
Assert. assert Equal s("basic", response. getContentAsString());

See the RESTEasy Javadoc for all the ease-of-use methods associated with MockHttpRequest,
and MockHttpResponse.

157

158

Chapter 38.

Chapter 38. Securing JAX-RS and
RESTeasy

Because Resteasy is deployed as a servlet, you must use standard web.xml constraints to enable
authentication and authorization.

Unfortunately, web.xml constraints do not mesh very well with JAX-RS in some situations. The
problem is that web.xml URL pattern matching is very very limited. URL patterns in web.xml only
support simple wildcards, so JAX-RS resources like:

[{ pat hpar ant}/ f oo/ bar/ { pat hpar anR}
Cannot be mapped as a web.xml URL pattern like:
/ */fool bar/*

To get around this problem you will need to use the security annotations defined below on your
JAX-RS methods. You will still need to set up some general security constraint elements in
web.xml to turn on authentication.

Resteasy JAX-RS supports the @RolesAllowed, @PermitAll and @DenyAll annotations on JAX-
RS methods. By default though, Resteasy does not recognize these annotations. You have to
configure Resteasy to turn on role-based security by setting a context parameter. NOTE!!! Do not
turn on this switch if you are using EJBs. The EJB container will provide this functionality instead
of Resteasy.

<web- app>

<cont ext - par an>
<par am nanme>r est easy. r ol e. based. securi ty</ par am nanme>
<par am val ue>t r ue</ par am val ue>
</ cont ext - par an>
</ web- app>

There is a bit of quirkiness with this approach. You will have to declare all roles used within
the Resteasy JAX-RS war file that you are using in your JAX-RS classes and set up a security

159

Chapter 38. Securing JAX-RS a...

constraint that permits all of these roles access to every URL handled by the JAX-RS runtime.
You'll just have to trust that Resteasy JAX-RS authorizes properly.

How does Resteasy do authorization? Well, its really simple. It just sees if a method is
annotated with @RolesAllowed and then just does HttpServletRequest.isUserInRole. If one of the
@RolesAllowed passes, then allow the request, otherwise, a response is sent back with a 401
(Unauthorized) response code.

So, here's an example of a modified RESTEasy WAR file. You'll notice that every role declared is
allowed access to every URL controlled by the Resteasy servlet.

<web- app>

<cont ext - par an»
<par am name>r est easy. rol e. based. securi ty</ param nanme>
<par am val ue>t r ue</ par am val ue>

</ cont ext - par an®

<li stener>
<li st ener-
cl ass>org. j boss. resteasy. pl ugi ns. server. servl et. Rest easyBoot strap</|i stener-
cl ass>
</listener>

<servlet>
<servl et - nane>Rest easy</ ser vl et - nane>
<servl et -
cl ass>org.j boss. rest easy. pl ugi ns. server.servl et. HtpServl et D spatcher</
servl et -cl ass>
</servlet>

<servl et - mappi ng>
<servl et - nane>Rest easy</ ser vl et - nane>
<url-pattern>/*</url-pattern>

</ servl et - mappi ng>

<security-constraint>
<web-resource-col | ecti on>
<web- r esour ce- nane>Rest easy</ web- r esour ce- nane>
<url -pattern>/security</url-pattern>
</ web-resource-col |l ecti on>
<aut h- constrai nt >
<r ol e- name>adm n</r ol e- name>
<r ol e- name>user </ r ol e- nane>
</ aut h-constrai nt >
</ security-constraint>

160

<l ogi n-confi g>
<aut h- met hod>BASI C</ aut h- met hod>
<r eal m nane>Test </ r eal m name>
</l ogi n-confi g>

<security-rol e>

<r ol e- name>adni n</ r ol e- nanme>
</security-rol e>
<security-rol e>

<r ol e- nane>user </ r ol e- name>
</security-rol e>

</ web- app>

161

162

Chapter 39.

Chapter 39. OAuth 2.0 and
Resteasy Skeleton Key

The overall goal of Resteasy Skeleton Key is to provide a unified way for both Browser and JAX-
RS clients to be secured in an integrated and seemless fashion. We want to support a network of
applications and services so that if one server needs to execute or forward requests to another,
there is a secure and scalable way to do this without hitting a central authentication server each
and every request.

The OAuth 2.0 [http://tools.ietf.org/html/rfc6749] Authorization Framework enables a third-party
to obtain access to an HTTP resource on behalf of a resource owner without the third-party
having to know the credentials of the resource owner. It does this by issuing access tokens via a
browser redirect protocol, or by a direct grant. The access tokens can then be transmitted by the
OAuth2 Bearer Token [http://tools.ietf.org/html/draft-ietf-oauth-v2-bearer-23] protocol to access
the protected resource.

Resteasy Skeleton Key is an OAuth 2.0 implementation that allows you to use existing JBoss
AS7 security infrastructure to secure your web applications and restful services. You can turn an
existing web app into an OAuth 2.0 Access Token Provider or you can turn a JBoss AS7 Security
Domain into a central authentication and authorization server that a whole host of applications
and services can use. Here are the features in a nutshell:

e Turn an existing servlet-form-auth-based web application into an OAuth 2.0 provider.

« Provide Distributed Single-Sign-On (SSO) from a central authentication server. Log in once,
and you can securely access any browser-based app configured to work in the domain.

» Provide Distributed Logout. Following one link from any application can log you out of all your
distributed applications configured to use SSO.

» Web apps can interact securely with any remote restful service by forwarding access tokens
through the standard Authorization header.

» Access tokens are digitally signed by the oauth2 framework and can be used to access
any service configured to work in the domain. The tokens contain both identity and role
mapping information. Because they are digitally signed, there's no need to overload the central
authentication server with each request to verify identity and to determine permissions.

Important

The Resteasy distribution comes with an OAuth2 Skeleton key example. This is a
great way to see OAuth2 in action and how it is configured. You may also want to
use this as a template for your applications.

163

http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/draft-ietf-oauth-v2-bearer-23
http://tools.ietf.org/html/draft-ietf-oauth-v2-bearer-23

Chapter 39. OAuth 2.0 and Res...

39.1. System Requirements

« JBoss AS 7.1.x or higher
« HTTPS is required. See the JBoss 7 documentation on how to enable SSL for web applications

» Resteasy 3.0 or higher must be installed within your AS7 distribution. View how to upgrade AS7
to the latest version of Resteasy.

* A username/password based JBoss security domain

» Browser-based apps must be configured to use servlet FORM authentication and web.xml
security constraints

39.2. Generate the Security Domain Key Pair

Access tokens are digitally signed and verified by an RSA keypair. You must generate this keypair
using the JDK's keytool command or by something like openssl.

$ keytool -genkey -alias nydomain -keyal g rsa -keystore real mjks

This will ask you a series of questions that will be used to create the X509 public certificate. Basic
PKI stuff that you hopefully are already familiar with. Move this keystore file into a directory that
you can reference from a configuration file. | suggest the standalone/configuration directory of
your JBoss AS7 distribution.

39.3. Setting up the Auth Server

The next thing you're gonna want to do is set up a web application to be your OAuth2 provider.
This can be an existing web app or you can create a new WAR to be your central authentication
server. An existing web app must be configured to use servlet FORM authentication. Enabling
OAuth2 within this app will not change how normal users interact with it.

39.3.1. Setting up your Security Domain

You can use any set of JBoss AS7 login modules you want to store your username, passwords
and role mappings. Each security domain will be comprised of regular users, oauth clients, and
admins. Oauth clients represent either a web application that wants to use the auth-server to do
SSO, or they are traditional oauth clients that want access permision to act on behalf of another
user (the traditional OAuth use case). Every oauth client must have a username, password, and
a specific role mapping that gives them various permissions to participate in OAuth 2 protocols.
There is a role that grants an oauth client permission to login as a specific user (default is | ogi n.
This is the SSO case. There is a role that grants a client permission to request permission to act
on behalf of a user (default is oaut h). Additional role mappings assigned to the oauth client define

164

Auth Server Config File

what additional permissions they are allowed to have. These additional permissions are the role
mappings of the application and are the intersection of the permissions given to the user the client
is acting on behalf of. This is better explained by an example role mapping file:

wbur ke=user, adnmi n

| ogi ncl i ent =l ogi n

oaut hcl i ent 1=oaut h, *
oaut hcl i ent 2=o0aut h, user

In the above role mapping file with have a simple user wbur ke. He has application role permissions
of user and admi n. One oauth client user is | ogi ncli ent. It has been given a role mapping
of 1 ogi n. This client is allowed to login as the user and is given all roles of the user. The
oaut hcl i ent 1 user is not allowed to login as the user, but is allowed to obtain an OAuth grant
to act on behalf of the user. The * role means that oaut hcl i ent 1 is granted the same roles as
the user it is acting on behalf of. If oaut hcl i ent 1 acts on behalf of wour ke then it will have both
user and adni n permissions. The oaut hcl i ent 2 is also allowed to use the oauth grant protocol,
but it will only ever be granted user permissions.

You are not confined to login, oauth, and * as role mapping names. You can configure them to
be whatever you want.

Why have different login and oauth role mappings? | ogi n clients are allowed to bypass entering
username and password if the user has already logged in once and has an existing authenticated
session with the server. oaut h clients are always required to enter username and password. You
probably don't want to grant permission automatically to an oauth client. A user will want to look
at who is requesting permission. This role distinction gives you this capability.

39.3.2. Auth Server Config File

You must create a configuration file that holds all the configuration for OAuth2. This is json
formatted If you name it resteasy-oauth.json and put it within the WEB-I NF/ directory
of your war, that's all you have to do. Otherwise, you must specify the full path to this
configuration file within a context-param within your web.xml file. The name of this param is
skel eton. key.config.file. You can reference System properties within the value of this
context-param by enclosing them within ${ VARI ABLE} . Here's an example configuration:

{
"realnt' : "nmydomain",
"adm n-role" : "adm n",
"l ogin-role" : "login",
"oaut h-client-role" : "oauth",
"wi | dcard-role" : "*",
"real mkeystore" : "${jboss.server.config.dir}/realmjks",

165

Chapter 39. OAuth 2.0 and Res...

"real mkey-alias" : "mydomain",

"real m keyst or e- password” : "password",

"real mprivate-key-password" : "password",

"access-code-lifetine" : "300",

"token-lifetime" : "3600",

"truststore" : "${jboss.server.config.dir}/client-truststore.ts",
"truststore-password" : "password",

"resources" : |

"https://exanpl e.com cust ormer-portal ",
"https://sonmewhere. conl product -portal "

Let's go over what each of these config variables represent:

realm
Name of the realm representing the users of your distributed applications and services

admin-role
Admin role mapping used for admins. You must have this defined if you want to do distributed
logout.

login-role
Role mapping for login clients.

oauth-client-role
Role mapping for regular oauth clients.

wildcard-role
Role mapping for assigning all roles to an oauth client wishing to act on behalf of a user.

realm-keystore
Absolute path pointing to the keystore that contains the realm's keypair. This keypair is used
to digitally sign access tokens. You may use ${ VARI ABLE} to reference System properties.
The example is referencing the JBoss config dir.

realm-key-alias
Key alias for the key pair stored in your realm-keystore file.

realm-keystore-password
Password to access the keystore.

realm-private-key-password
Password to access the private realm key within the keystore

access-code-lifetime
The access code is obtained via a browser redirect after you log into the central server. This
access code is then transmitted in a separate request to the auth server to obtain an access

166

Set up web.xml

token. This variable is the lifetime of this access code. In how many seconds will it expire.
You want to keep this value short. The default is 300 seconds.

token-lifetime
This is how long in seconds the access token is viable after it was first created. The default
is one hour. Depending on your security requirements you may want to extend or shorten
this default.

truststore
Used for outgoing client HTTPS communications. This contains one or more trusted host
certificates or certificate authorities. This is OPTIONAL if you are not using distributed logout.

truststore-password
Password for the truststore keystore.

resources
Root URLSs of applications using this auth-server for SSO. This is OPTIONAL and only needed
if you want to allow distributed logout.

39.3.3. Set up web.xml

Set up your security constraints however you like. You must though use FORM authentication.

39.3.4. Set up jboss-web.xml

In jboss-web.xml in your WEB-INF directory, point to your security domain as a normal secured
web app does, and also use a specific valve.

<j boss- web>

<security-donmai n> ava:/j aas/ conmer ce</ security-donai n>

<val ve>

<cl ass-

name>or g. j boss. r est easy. skel et on. key. as7. QAut hAut henti cati onSer ver Val ve</
cl ass- name>

</val ve>
</ j boss-web>

39.3.5. Set up jboss-deployment-structure.xml

You must import the skeleton key modules so that the classes are visible to this application.
Include this file within WEB-INF

<j boss- depl oynent - struct ure>
<depl oynent >
<dependenci es>

167

Chapter 39. OAuth 2.0 and Res...

<nmodul e name="org.j boss. rest easy. resteasy-jaxrs" services="inport"/>
<nmodul e nane="org. | boss. resteasy. resteasy-jackson-provider"
servi ces="inport"/>
<nmodul e name="org. j boss. rest easy. skel et on- key"/ >
</ dependenci es>
</ depl oynent >
</ j boss- depl oynment - st ruct ur e>

39.3.6. Tweak your login page

The action url used by your login form is dependent on the oauth protocol. Skeleton key defines
a request attribute called CAUTH_FORM ACTI ON which is the URL you should use for the form's
action. Here's an example login.jsp page that uses this attribute:

<form acti on="<% request.getAttribute(" QAUTH FORM ACTI ON') %" net hod=post >
<p>Pl ease Enter Your User Nane:

<input type="text" name="j _usernane" size="25">
<p><p>Pl ease Enter Your Password:
<i nput type="password" size="15" name="j _password">
<p><p>

<input type="subnit" val ue="Submt">
<input type="reset" val ue="Reset">
</form

39.4. Setting Up An App for SSO

This section specifies how you can use the central auth-server for SSO. Following these directions
will use the auth-server for browser log in. The server will also be able to do bearer token
authentication as well.

39.4.1. SSO config file

The best way to create the config file for your application is to ask the central authentication
server you configured in the last section. So, boot up the auth server and go to https://auth-server-
context-root/j_oauth_realm_info.html. For example: https://| ocal host: 8443/ aut h-server/
j _oauth_real minfo.htm . This will show template configurations depending on which valve
you are using. You want the QAut hManagedResour ceVal ve config. It will look something like this.

"realnt : "nydomain",
"real mpublic-key" : "M & MAOGCSqGSI b3DQEBAQUAAAGNADCBI QKBgQCOBXXyi 70Ag5ecsYy
+t Jr | 54N2Tt KAkx uMEDnz v SPU+mMUA2/ 3qHecxucZakGr4Z49410t n51 | u2CXXl k9CuKepXvKh

168

SSO config file

+cPBznCLNbd+4Mel RWZnvogy Pl Cs8h3sNTAVNAf | 6hDe5/ M VQQOmBOZr KoNR3dY50nTi /
ExnJ51 WPgxQl DAQAB"

"adm n-role" : "adm n",
"auth-url" : "https://|ocal host: 8443/ aut h-server/l ogin.jsp",
"code-url" : "https://|ocal host: 8443/ aut h-server/j_oauth_resol ve_access_code",
"truststore" : "REQU RED',
"truststore-password" : "REQU RED',
"client-id" : "REQU RED',
"client-credential s" : {
"password" : " REQUI RED'
}

Let's go over what each of these config variables represent:

realm
Name of the realm representing the users of your distributed applications and services

realm-public-key
PEM format of public key.

admin-role
Admin role mapping used for admins. You must have this defined if you want to do distributed
logout.

auth-url
URL of the auth server's login page.

code-url
URL to turn an access code into an access token. (Part of the OAuth2 protocol)

truststore
Used for outgoing client HTTPS communications. This contains one or more trusted host
certificates or certificate authorities. This is REQUIRED as you must talk HTTPS to the auth
server to turn an access code into an access token. You can create this truststore by extracting
the public certificate of the auth server's SSL keystore. The google knows if you want to know
how to do this.

truststore-password
Password for the truststore keystore.

client-id
Username of the login client. This server will send client-id and password when turning an
access code into an access token. Internally, the server will do an HTTPS invocation to the
auth-server passing this information using Basic AUTH.

client-credentials
Must specify the password of the oauth login client.

169

Chapter 39. OAuth 2.0 and Res...

39.4.2. Set up web.xml

Set up your security constraints however you like. You must though use FORM authentication.

39.4.3. Set up jboss-web.xml

In jboss-web.xml in your WEB-INF directory you need to use a specific valve.

<j boss- web>
<val ve>
<cl ass-
name>or g. j boss. r est easy. skel et on. key. as7. QAut hManagedResour ceVal ve</ cl ass-
nane>
</val ve>
</ j boss- web>

39.4.4. Set up jboss-deployment-structure.xml

You must import the skeleton key modules so that the classes are visible to this application.
Include this file within WEB-INF

<j boss- depl oynent - struct ure>
<depl oynent >
<dependenci es>
<modul e name="org.j boss. rest easy. resteasy-j axrs" services="inport"/>
<nmodul e nane="org. | boss. resteasy. resteasy-jackson-provider"
servi ces="inport"/>
<nmodul e name="or(g. j boss. rest easy. skel et on- key"/ >
</ dependenci es>
</ depl oynent >
</ j boss- depl oynment - st ruct ure>

39.5. Bearer Token only Setup

If you have a web app that you want only to allow Bearer token authentication, i.e. a set of JAX-
RS services then follow these directions.

39.5.1. Bearer token auth config file

The best way to create the config file for your application is to ask the central authentication
server you configured in the last section. So, boot up the auth server and go to https://auth-server-
context-root/j_oauth_realm_info.html. For example: https://1 ocal host: 8443/ aut h-server/

170

Set up web.xml

j _oaut h_real mi nf o. ht nl . This will show template configurations depending on which valve you
are using. You want the Bear er TokenAut hent i cat or Val ve config. It will look something like this.

"realm' : "mydonmin",

"real mpublic-key" : "M G MAOGCSqGSI b3DQEBAQUAAAGNADCBI QKBgQCOBXXyi 70Ag5ecsYy
+t Jr | 54N2Tt KAkx uMEDnz v SPU+mMUA2/ 3gHcxucZak Gr4249410t n51 | u2CXXl k9CuKcpXvKh
+cPBznTC1Nmbd+4Mel RWWZnvogyPl Cs8h3sNTAMNAf | 6hDc5/ M VQQONbOZr KbNR3dY50nTTi /

ExnJ51 WPgxQ DAQAB" ,
}

All that is needed is the realm name, and the public key of the realm. Let's go over what each of
these config variables represent:

realm
Name of the realm representing the users of your distributed applications and services

realm-public-key
PEM format of the realm's public key. Used to verify tokens.

39.5.2. Set up web.xml

Set up your security constraints however you like. You must though use FORM authentication.

39.5.3. Set up jboss-web.xml

In jboss-web.xml in your WEB-INF directory you need to use a specific valve.

<j boss- web>
<val ve>
<cl ass-
name>or g. j boss. r est easy. skel et on. key. as7. Bear er TokenAut hent i cat or Val ve</ cl ass-
nanme>
</val ve>
</ j boss-web>

39.5.4. Set up jboss-deployment-structure.xml

You must import the skeleton key modules so that the classes are visible to this application.
Include this file within WEB-INF

171

Chapter 39. OAuth 2.0 and Res...

<j boss- depl oynent - struct ure>
<depl oynent >
<dependenci es>
<rmodul e name="org.j boss. rest easy. resteasy-j axrs" services="inport"/>
<nmodul e nane="org. | boss. resteasy. resteasy-jackson-provider"
servi ces="inport"/>
<nmodul e name="or(g. j boss. rest easy. skel et on- key"/ >
</ dependenci es>
</ depl oynent >
</ j boss- depl oynent - st ruct ure>

39.6. Obtaining an access token programmatically.

You can request an access token from the auth-server by doing a simple HTTPS invocation. You
must use BASIC authentication to identify your user, and you will get back a signed access token
for that user. Here's an example using a JAX-RS 2.0 client:

Rest easyClient client = new ResteasyC ientBuil der()
.truststore(truststore)
.build();

Form form = new Forn().paran("grant _type", "client_credentials")
Rest easyWebTarget target = client.target ("https://Iocal host: 8443/ aut h-server/
j _oaut h_t oken_grant");
target.configuration().register(new Basi cAut henticati on("bburke@ edhat. cont,
"password"));
AccessTokenResponse res = target.request()
.post (Entity.formform, AccessTokenResponse.cl ass);

The above makes a simple POST to the context root of the auth server withj _oaut h_t oken_gr ant
at the end of the target URL. This resource is responsible for creating access tokens.

try

Response response = client.target("https://I|ocal host: 8443/ dat abase/
products").request ()
. header (Ht t pHeader s. AUTHORI ZATI ON, " Bear er
+ res. get Token()).get();
String xml = response.readEntity(String.class);
}
finally

{

client.close();

172

Access remote services securely in a secure web session

The access token is a simple string. To invoke on a service protected by bearer token auth, just set
the Aut hori zati on header of your HTTPS request with a value of Bear er and then the access
token string.

39.7. Access remote services securely in a secure web
session

If you have an application secured by one of the methods described in this chapter, you can
obtain the access token of the current web session so that you can use it to invoke on other
remote services securely using bearer token authentication. Each HttpServletRequest in a secure
web session has an attribute called or g. j boss. r est easy. skel et on. key. Skel et onKeySessi on
which points to an instance of a class with the same name. This class contains the access token
and also points to the truststore you configured. You can then extract this info and make secure
remote invocations. Here's an example of that.

public List<String> getCustoners(HttpServl et Request request)
{
Skel et onKeySessi on sessi on =
(Skel et onKeySessi on) request . get Attri but e(Skel et onKeySessi on. cl ass. get Name()) ;
Rest easyClient client = new ResteasyC ientBuil der()
.truststore(session. get Metadata().get Truststore())
. bui I d();
try

Response response = client.target("https://|ocal host: 8443/ dat abase/
custoners").request ()
. header (Ht t pHeader s. AUTHORI ZATI ON, "Bearer " +
sessi on. get Token()). get();
return response. readEntity(new GenericType<List<String>>(){});

}
finally
{
client.close();
}

If you are within a JAX-RS environment you can inject a Skel et onKeySessi on using the @ont ext
annotation.

173

Chapter 39. OAuth 2.0 and Res...

39.8. Check Out the OAuth2 Example!

Important

The Resteasy distribution comes with an example project that shows all of these
different features in action! Check it out!

39.9. Auth Server Action URLSs

For reference, here is the set of relative URL actions that the auth server will publish.
login page
The is the url of your login page. OAuth clients will redirect to it. This is application specific.

j_oauth_resolve _access_code
Used by oauth clients to turn an access code into an access token.

j_oauth_logout
Do a GET request to this URL and it will perform a distributed logout.

j_oauth_token_grant
Do a POST with BASIC Auth to obtain an access token for a specific user.

j_oauth_realm_info.html
Displays an HTML page with template configurations for using this realm.

174

Chapter 40.

Chapter 40. Authentication

Since Resteasy runs within a servlet container you can use most (all?) mechanism available in
your servlet container for authentication. Basic and Digest authentication are probably the easiest
to set up and fit nicely into REST's stateless principle. Form security can be used, but requires
passing the session's cookie value with each request. We have done some preliminary work on
OAuth and also plan to work on OpenID and SAML integration in the future.

40.1. OAuth core 1.0a

RESTEasy has preliminary support for OAuth core 1.0a [http://oauth.net/core/1.0a]. This includes
support for authenticating with OAuth (as described by the spec section 6 [http://oauth.net/
core/1.0a#rfc.section.6]) and OAuth authentication for protected resources (as described by the
spec section 7 [http://oauth.net/core/1.0a#rfc.section.7]).

Important

This API is deprecated and will be removed in subsequent versions of Resteasy
unless there is an outcry from the community. We're focusing on OAuth 2.0
protocols. Please see our OAuth 2.0 Work.

40.1.1. Authenticating with OAuth 1.0a

OAuth authentication is the process in which Users grant access to their Protected Resources
without sharing their credentials with the Consumer.

OAuth Authentication is done in three steps:

1. The Consumer obtains an unauthorized Request Token. This part is handled by RESTEasy.

2. The User authorizes the Request Token. This part is not handled by RESTEasy because it
requires a user interface where the User logs in and authorizes or denies the Request Token.
This cannot be implemented automatically as it needs to be integrated with your User login
process and user interface.

3. The Consumer exchanges the Request Token for an Access Token. This part is handled by
RESTEasy.

In order for RESTEasy to provide the two URL endpoints where the Client will request
unauthorized Request Tokens and exchange authorized Request Tokens for Access Tokens, you
need to enable the OAuthServlet in your web.xml:

175

http://oauth.net/core/1.0a
http://oauth.net/core/1.0a
http://oauth.net/core/1.0a#rfc.section.6
http://oauth.net/core/1.0a#rfc.section.6
http://oauth.net/core/1.0a#rfc.section.6
http://oauth.net/core/1.0a#rfc.section.7
http://oauth.net/core/1.0a#rfc.section.7

Chapter 40. Authentication

<l-- The QAuth Servl et handl es token exchange -->
<servl| et >

<ser vl et - nane>QAut h</ ser vl et - nane>

<servl et-class>org.j boss. RESTEasy. aut h. oaut h. QAut hSer vl et </ servl et - cl ass>
</servlet>

<I-- This will be the base for the token exchange endpoint URL -->
<servl et - mappi ng>

<servl et - nane>QAut h</ ser vl et - nane>

<url -pattern>/oauth/*</url-pattern>
</ servl et - mappi ng>

The following configuration options are available using <cont ext - par an®> el enent s:

Table 40.1. OAuth 1.0a Servlet options

Option Name Default Description

oauth.provider.provider-class *Required* Defines the fully-qualified
class name of your
OAuthProvider

implementation

oauth.provider.tokens.request /requestToken This defines the endpoint URL
for requesting unauthorized
Request Tokens

oauth.provider.tokens.access /accessToken This defines the endpoint URL
for exchanging authorized
Request Tokens for Access
Tokens

40.1.2. Accessing protected resources

After successfully receiving the Access Token and Token Secret, the Consumer is able to access
the Protected Resources on behalf of the User.

RESTEasy supports OAuth authentication for protected resources using a servlet filter which
should be mapped in your web.xml for all protected resources:

<l-- The QAuth Filter handl es authentication for protected resources -->
<filter>

<filter-name>QAuth Filter</filter-name>

<filter-class>org.]jboss. RESTEasy. aut h. oaut h. QAut hFi I ter</filter-class>

176

Implementing an OAuthProvider

</filter>

<I-- This defines the URLs which should require QAuth authentication for your
protected resources -->
<filter-mpping>
<filter-nanme>QAuth Filter</filter-nanme>
<url -pattern>/rest/*</url-pattern>
</filter-mappi ng>

The following configuration options are available using <cont ext - par an®> el enent s:

Table 40.2. OAuth Filter options

Option Name Default Description

oauth.provider.provider-class *Required* Defines the fully-qualified
class name of your
OAuthProvider

implementation

Once authenticated, the OAuth Servlet Filter will set your request's Principal and Roles, which
can then be accessed using the JAX-RS SecurityContext. You can also protect your resources
using Roles as described in the section "Securing JAX-RS and RESTeasy".

40.1.3. Implementing an OAuthProvider

In order for RESTEasy to implement OAuth it needs you to provide an instance of QAut hPr ovi der
which will provide access to the list of Consumer, Request and Access Tokens. Because one size
doesn't fit all we cannot know if you wish to store your Tokens and Consumer credentials in a
configuration file, in memory, or on persistent storage.

All you need to do is implement the QAut hPr ovi der interface:

public interface QAut hProvider {
String getReal m();

QAut hConsuner get Consuner (String consumer Key)t hrows QAut hExcepti on;

QAut hToken get Request Token(String consunerKey, String requestToken) throws
QAut hExcepti on;

QAut hToken get AccessToken(String consunerKey, String accessToken) throws
QAut hExcepti on;

QAut hToken rmakeRequest Token(String consumerKey, String callback) throws
QAut hExcepti on;

177

Chapter 40. Authentication

QAut hToken makeAccessToken(String consunmerKey, String requestToken, String
verifier) throws QAuthException;

String authori seRequest Token(String consumerKey, String requestToken) throws
QAut hExcepti on;

voi d checkTi mest anp(QAut hToken token, long tinmestanp) throws QAut hExcepti on;

If a Consumer Key, or Token doesn't exist, or if the timestamp is not valid, simply throw an
QAut hExcept i on.

The rest of the interfaces used in QAut hPr ovi der are:

public interface QAut hConsuner ({
String getKey();
String getSecret();

}

public interface QAut hToken {
QAut hConsuner get Consurer () ;
String get Token();
String getSecret();
Princi pal getPrincipal();
Set <String> get Rol es();

178

Chapter 41.

Chapter 41. JSON Web Signature
and Encryption (JOSE-JWT)

JSON Web Signature and Encryption (JOSE JWT) is a new specification that can be used to
encode content as a string and either digitally sign or encrypt it. | won't go over the spec here Do
a Google search on it ifyou're interested

41.1. JSON Web Signature (JWS)

To digitally sign content using JWS, use the or g. j boss. rest easy. j ose. j ws. JWSBui | der class.
To unpack and verify a JWS, use the or g. j boss. rest easy. j ose. j ws. JWSI nput class. (TODO,
write more doco here!) Here's an example:

@est
public void test RSAWt hContent Type() throws Exception

{
KeyPair keyPair = KeyPair Generator.getlnstance("RSA"). generateKeyPair();

String encoded = new JWSBuI | der ()
. cont ent Type(Medi aType. TEXT_PLAI N_TYPE)
.content("Hello Worl d", Medi aType. TEXT_PLAI N_TYPE)
.rsa256(keyPair.getPrivate());

System out . printl n(encoded);

JWSI nput i nput = new JWSI nput (encoded,
Rest easyProvi der Factory. get | nstance());
System out. println(input.get Header());
String neg = (String)input.readContent(String.class);
Assert. assert Equal s("Hell o Worl d", nsQ);
Assert.assert True(RSAProvi der. verify(input, keyPair.getPublic()));

41.2. JISON Web Encryption (JWE)

To encrypt content using JWE, use the org. j boss. rest easy. j ose. j we. JWEBUi | der class. To
decrypt content using JWE, use the org. j boss. rest easy. j ose. j we. JWEI nput class. (TODO,
write more doco here!l) Here's an example:

179

Chapter 41. JSON Web Signatur...

@rest
public void testRSA() throws Exception

{
KeyPai r keyPair = KeyPair Generator.getlnstance("RSA"). generateKeyPair();

String content = "Live |long and prosper.";

{
String encoded = new

JVEBUI | der () . cont ent Byt es(content. get Bytes()). RSAL_5((RSAPubl i cKey) keyPai r. get Public());

Systemout. println("encoded: " + encoded);
byt e[] raw = new

JVEEI nput (encoded) . decrypt ((RSAPri vat eKey) keyPai r. get Private()). get RawContent () ;

String from= new String(raw;
Assert. assert Equal s(content, from;

}
{
String encoded = new
JWEBuUI | der () . cont ent Byt es(content. get Byt es()). RSA_QAEP((RSAPubl i cKey) keyPai r. get Public());
System out. println("encoded: + encoded) ;
byt e[] raw = new

JVEEI nput (encoded) . decrypt ((RSAPri vat eKey) keyPai r. get Pri vate()) . get RawCont ent () ;

String from= new String(raw;
Assert.assert Equal s(content, fron);

}
{
String encoded = new
JWEBui | der () . cont ent Byt es(cont ent . get Byt es()). AL128CBC_HS256() . RSA1_5((RSAPubl i cKey) keyPai r . get
Systemout. println("encoded: " + encoded);
byte[] raw = new

JVEEI nput (encoded) . decr ypt ((RSAPri vat eKey) keyPai r. get Pri vate()). get RawContent () ;

String from= new String(raw;
Assert. assert Equal s(content, from;

}
{
String encoded = new
JWEBUI | der (). cont ent Byt es(cont ent. get Bytes()).A128CBC_HS256() . RSA_OAEP((RSAPubl i cKey) keyPai r . ¢
Systemout. println("encoded: " + encoded);
byte[] raw = new

JVEI nput (encoded) . decr ypt ((RSAPri vat eKey) keyPai r. get Pri vate()) . get RawCont ent () ;

String from= new String(raw;
Assert. assert Equal s(content, from;

@rest

180

JSON Web Encryption (JWE)

public void testDirect() throws Exception

{
String content = "Live |ong and prosper.";
String encoded = new
JVEBUI | der (). content Bytes(content. getBytes()).dir("gehein');
Systemout. println("encoded: " + encoded);
byte[] raw = new JVEI nput (encoded) . decrypt (" gehei n') . get RawCont ent () ;
String from= new String(raw);
Assert. assert Equal s(content, from;
}

181

182

Chapter 42.

Chapter 42. Doseta Digital
Signature Framework

Digital signatures allow you to protect the integrity of a message. They are used to verify that a
message sent was sent by the actual user that sent the message and was modified in transit.
Most web apps handle message integrity by using TLS, like HTTPS, to secure the connection
between the client and server. Sometimes though, we have representations that are going to
be forwarded to more than one recipient. Some representations may hop around from server to
server. In this case, TLS is not enough. There needs to be a mechanism to verify who sent the
original representation and that they actually sent that message. This is where digital signatures
come in.

While the mime type multiple/signed exists, it does have drawbacks. Most importantly it requires
the receiver of the message body to understand how to unpack. A receiver may not understand
this mime type. A better approach would be to put signatures in an HTTP header so that receivers
that don't need to worry about the digital signature, don't have to.

The email world has a nice protocol called Domain Keys Identified Mail [http://dkim.org] (DKIM).
Work is also being done to apply this header to protocols other than email (i.e. HTTP) through
the DOSETA specifications [https://tools.ietf.org/html/draft-crocker-doseta-base-02]. It allows you
to sign a message body and attach the signature via a DKIM-Signature header. Signatures are
calculated by first hashing the message body then combining this hash with an arbitrary set of
metadata included within the DKIM-Signature header. You can also add other request or response
headers to the calculation of the signature. Adding metadata to the signature calculation gives
you a lot of flexibility to piggyback various features like expiration and authorization. Here's what
an example DKIM-Signature header might look like.

DKI M Si gnature: v=1;
a=r sa- sha256;
d=exanpl e. com
s=bur ke;
c=si npl e/ si npl e;
h=Cont ent - Type;
x=0023423111111;
bh=2342322111,;
b=M232234=

As you can see it is a set of name value pairs delimited by a *;'. While its not THAT important to
know the structure of the header, here's an explanation of each parameter:

Protocol version. Always 1.

183

http://dkim.org
http://dkim.org
https://tools.ietf.org/html/draft-crocker-doseta-base-02
https://tools.ietf.org/html/draft-crocker-doseta-base-02

Chapter 42. Doseta Digital Si...

a
Algorithm used to hash and sign the message. RSA signing and SHA256 hashing is the only
supported algorithm at the moment by Resteasy.

d
Domain of the signer. This is used to identify the signer as well as discover the public key to
use to verify the signature.

S
Selector of the domain. Also used to identify the signer and discover the public key.

c
Canonical algorithm. Only simple/simple is supported at the moment. Basically this allows you
to transform the message body before calculating the hash

h
Semi-colon delimited list of headers that are included in the signature calculation.

X
When the signature expires. This is a numeric long value of the time in seconds since epoch.
Allows signer to control when a signed message's signature expires

t
Timestamp of signature. Numeric long value of the time in seconds since epoch. Allows the
verifier to control when a signature expires.

bh
Base 64 encoded hash of the message body.

b

Base 64 encoded signature.

To verify a signature you need a public key. DKIM uses DNS text records to discover a public
key. To find a public key, the verifier concatenates the Selector (s parameter) with the domain
(d parameter)

<selector>._domainKey.<domain>

It then takes that string and does a DNS request to retrieve a TXT record under that entry. In
our above example burke._domainKey.example.com would be used as a string. This is a every
interesting way to publish public keys. For one, it becomes very easy for verifiers to find public
keys. There's no real central store that is needed. DNS is a infrastructure IT knows how to deploy.
Verifiers can choose which domains they allow requests from. Resteasy supports discovering
public keys via DNS. It also instead allows you to discover public keys within a local Java KeyStore
if you do not want to use DNS. It also allows you to plug in your own mechanism to discover keys.

If you're interested in learning the possible use cases for digital signatures, here's a blog [http://
bill.burkecentral.com/2011/02/21/multiple-uses-for-content-signature/] you might find interesting.

184

http://bill.burkecentral.com/2011/02/21/multiple-uses-for-content-signature/
http://bill.burkecentral.com/2011/02/21/multiple-uses-for-content-signature/
http://bill.burkecentral.com/2011/02/21/multiple-uses-for-content-signature/

Maven settings

42.1. Maven settings

You must include the resteasy-crypto project to use the digital signature framework.

<dependency>
<groupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>resteasy-crypto</artifactld>
<version>3.0.9. Fi nal </ versi on>

</ dependency>

42.2. Signhing API

To sign a request or response using the Resteasy client or server framework you need to create an
instance of org.jboss.resteasy.security.doseta.DKIMSignature. This class represents the DKIM-
Signature header. You instantiate the DKIMSignature object and then set the "DKIM-Signature"
header of the request or response. Here's an example of using it on the server-side:

i mport org.jboss.resteasy.security. doseta. DKI MSi gnat ur e;
i mport java.security. PrivateKey;

@rat h("/ si gned")
public static class SignedResource

{
@ET
@rat h(" manual ")
@roduces("text/plain")
publ i ¢ Response get Manual ()
{
PrivateKey privateKey =; // get the private key to sign nmessage
DKI MSi gnat ure signature = new DKI MSi gnature();
signature.setSel ector("test");
si gnat ur e. set Domai n(" sanpl ezone. org");
si gnature. set Privat eKey(privat eKey);
Response. ResponseBui | der bui | der = Response. ok("hello world");
bui | der . header (DKI MSi gnat ur e. DKI M_SI GNATURE, si gnature);
return builder.build();
}
}

/] client exanple

185

Chapter 42. Doseta Digital Si...

DKI Msi gnat ure si gnature = new DKI MSi gnature();
PrivateKey privatekKey = ...; // go find it
signature.set Sel ector("test");

si gnat ur e. set Dorai n(" sanpl ezone. org");

si gnature. set Privat eKey(privat eKey);

Cli ent Request request = new ClientRequest("http://...");
request . header ("DKI M Si ghat ure", signature);

request . body("text/plain", "some body to sign");

Cl i ent Response response = request. put();

To sign a message you need a PrivateKey. This can be generated by KeyTool or manually using
regular, standard JDK Signature APIs. Resteasy currently only supports RSA key pairs. The
DKIMSignature class also allows you to add and control how various pieces of metadata are added
to the DKIM-Signature header and the signature calculation. See the javadoc for more details.

If you are including more than one signature, then just add additional DKIMSignature instances
to the headers of the request or response.

42.2.1. @Signed annotation

Instead of using the API, Resteasy also provides you an annotation alternative
to the manual way of signing using a DKIMSignature instances is to use the
@org.jboss.resteasy.annotations.security.doseta.Signed annotation. It is required that you
configure a KeyRepository as described later in this chapter. Here's an example:

@ET
@°r oduces("text/plain")
@rat h("si gnedr esource")
@i gned(sel ect or ="bur ke", domai n="sanpl e. cont', ti nmest anped=tr ue,
expi res=@Af t er (hour s=24))
public String getSigned()
{

return "hello world";

The above example using a bunch of the optional annotation attributes of @Signed to create the
following Content-Signature header:

DKI M Si gnature: v=1;
a=r sa- sha256;
c=si npl e/ si npl e;
domai n=sanpl e. com
s=bur ke;

186

Signature Verification API

t =02342342341,;
x=02342342322;
bh=n0234f sef asf ==;
b=mababaddbb==

Thi s annotation also works with the client proxy franmework.

42.3. Signature Verification API

If you want fine grain control over verification, this is an API to verify signatures manually. Its a
little tricky because you'll need the raw bytes of the HTTP message body in order to verify the
signature. You can get at an unmarshalled message body as well as the underlying raw bytes
by using a org.jboss.resteasy.spi.MarshalledEntity injection. Here's an example of doing this on
the server side:

i mport org.jboss.resteasy.spi.MrshalledEntity;

@osT
@onsunes("text/plain")
@at h("verify-nmanual ")
public voi d veri f yManual (@leader Par an(" Cont ent - Si gnat ur e") DKI Msi gnat ur e
si gnature,
@Cont ext KeyRepository repository,
@Cont ext Htt pHeaders headers,
Mar shal | edEntity<String> i nput) throws Exception

Verifier verifier = new Verifier();

Verification verification = verifier.addNew);

verification. set Repository(repository);

verification. set Stal eCheck(true);

verification.set Stal eSeconds(100);

try {

verifier.verifySi gnature(headers. get Request Headers(),

i nput . get Marshal | edByt es, signature);

} catch (SignatureException ex) {

}

Systemout. println("The text nessage posted is:

+ input.getEntity());

MarshalledEntity is a generic interface. The template parameter should be the Java type you want
the message body to be converted into. You will also have to configure a KeyRepository. This is
describe later in this chapter.

The client side is a little bit different:

187

Chapter 42. Doseta Digital Si...

Cli ent Request request = new CientRequest("http://|ocal host: 9095/ si gned"));

Cl i ent Response<String> response = request.get(String.class);
Verifier verifier = new Verifier();

Verification verification = verifier.addNew);

verification. set Repository(repository);

response. get Properties().put(Verifier.class.getNane(), verifier);

/'l signature verification happens when you get the entity
String entity = response.getEntity();

On the client side, you create a verifier and add it as a property to the
ClientResponse. This will trigger the verification interceptors.

42.3.1. Annotation-based verification

The easiest way to verify a signature sent in a HTTP request on the server side is to use
the @ @org.jboss.resteasy.annotations.security.doseta.Verify (or @Verifications which is used to
verify multiple signatures). Here's an example:

@CoSsT

@onsunes("text/plain")
@erify

public void post(String input)
{

}

In the above example, any DKIM-Signature headers attached to the posted message body will
be verified. The public key to verify is discovered using the configured KeyRepository (discussed
later in this chapter). You can also specify which specific signatures you want to verify as well
as define multiple verifications you want to happen via the @Verifications annotation. Here's a
complex example:

@0osT
@Consunes("text/plain")
@/erifications(
@erify(identifierNanme="d", i denti f er Val ue="i nventory. conf,
stal e=@\ft er (days=2)),
@erify(identifierName="d", identiferValue="bill.conl)

188

Managing Keys via a KeyRepository

public void post(String input) {...}

The above is expecting 2 different signature to be included within the DKIM-Signature header.

Failed verifications will throw an
org.jboss.resteasy.security.doseta.UnauthorizedSignatureException. This causes a 401 error
code to be sent back to the client. If you catch this exception using an ExceptionHandler you can
browse the failure results.

42.4. Managing Keys via a KeyRepository

Resteasy manages keys for you through a org.jboss.resteasy.security.doseta.KeyRepository. By
default, the KeyRepository is backed by a Java KeyStore. Private keys are always discovered
by looking into this KeyStore. Public keys may also be discovered via a DNS text (TXT) record
lookup if configured to do so. You can also implement and plug in your own implementation of
KeyRepository.

42.4.1. Create a KeyStore

Use the Java keytool to generate RSA key pairs. Key aliases MUST HAVE the form of:
<selector>. _domainKey.<domain>

For example:

$ keytool -genkeypair -alias burke._donai nKey. exanpl e. com - keyal g RSA -keysi ze
1024 -keystore ny-apps.jks

You can always import your own official certificates too. See the JDK documentation for more
details.

42.4.2. Configure Restreasy to use the KeyRepository

Next you need to configure the KeyRepository in your web.xml file so that it is created and
made available to Resteasy to discover private and public keys.You can reference a Java
key store you want the Resteasy signature framework to use within web.xml using either
rest easy. keystore. cl asspath or resteasy. keystore. fil ename context parameters. You
must also specify the password (sorry its clear text) using the r est easy. keyst or e. password
context parameter. The resteasy.context.objects is used to create the instance of the repository.
For example:

<cont ext - par an>
<par am nane>r est easy. doset a. keyst or e. cl asspat h</ par am nane>
<par am val ue>t est . j ks</ par am val ue>

</ cont ext - par an>

189

Chapter 42. Doseta Digital Si...

<cont ext - par anp
<par am nane>r est easy. doset a. keyst or e. passwor d</ par am nane>
<par am val ue>gehei nx/ par am val ue>
</ cont ext - par an>
<cont ext - par anp
<par am nane>r est easy. cont ext . obj ect s</ par am nane>
<par am val ue>or g. j boss. rest easy. security. doset a. KeyRepository

val ue>
</ cont ext - par an®

You can also manually register your own instance of a KeyRepository within an Application class.
For example:

i mport org.jboss.resteasy. core. D spat cher;
i mport org.jboss.resteasy.security. doseta. KeyRepository;
i nport org.jboss.resteasy.security. doseta. Doset aKeyRepository;

i mport javax.ws.rs.core.Application;
i mport javax.ws.rs.core. Context;

public class SignatureApplication extends Application

{
private HashSet <O ass<?>> cl asses = new HashSet <C ass<?>>();
private KeyRepository repository;
publ i ¢ Si gnatureApplication(@ontext Di spatcher dispatcher)
{
cl asses. add(Si gnedResour ce. cl ass) ;
repository = new Doset aKeyRepository();
reposi tory. set KeyStorePath("test.jks");
reposi tory. set KeySt or ePasswor d(" password") ;
reposi tory. set UseDns(f al se);
repository.start();
di spat cher. get Def aul t Cont ext Obj ect s() . put (KeyReposi tory. cl ass, repository);
}
@verride
public Set<d ass<?>> get Cl asses()
{
return cl asses;
}
}

190

Using DNS to Discover Public Keys

On the client side, you can load a KeyStore manually, by instantiating an instance of
org.jboss.resteasy.security.doseta.DosetaKeyRepository. You then set a request attribute,
"org.jboss.resteasy.security.doseta.KeyRepository", with the value of the created instance. Use
the ClientRequest.getAttributes() method to do this. For example:

Doset aKeyRepository keyRepository = new Doest aKeyRepository();
repository. set KeyStorePat h("test.jks");

reposi tory. set KeySt or ePasswor d(" password") ;

reposi tory. set UseDns(fal se);

repository.start();

DKI Msi gnat ure si gnature = new DKI MSi gnature();
si gnat ur e. set Dorai n(" exanpl e. cont') ;

Cli ent Request request = new ClientRequest("http://...");
request.get Attributes(). put(KeyRepository.class.getNane(), repository);
request . header ("DKI M Si gnature", signatures);

42.4.3. Using DNS to Discover Public Keys

Public keys can also be discover by a DNS text record lookup. You must configure web.xml to
turn this feature:

<cont ext - par an>
<par am nane>r est easy. doset a. use. dns</ par am nane>
<par am val ue>t r ue</ param val ue>
</ cont ext - par an>
<cont ext - par an>
<par am nane>r est easy. doset a. dns. uri </ par am nane>
<param val ue>dns: / /| ocal host: 9095</ par am val ue>
</ cont ext - par an>

The resteasy.doseta.dns.uri context-param is optional and allows you to point to a specific DNS
server to locate text records.

42.4.3.1. Configuring DNS TXT Records

DNS TXT Records are stored via a format described by the DOSETA specification. The public
key is defined via a base 64 encoding. You can obtain this text encoding by exporting your public
keys from your keystore, then using a tool like openssl to get the text-based format. For example:

191

Chapter 42. Doseta Digital Si...

$ keytool -export -alias bill._donmainKey.client.com -keystore client.jks -file
bill.der
$ openssl x509 -noout -pubkey -in bill.der -informder > bill.pem

The output will look something like:

----- BEG N PUBLI C KEY-----

M G MAOGCSqGS| b3DQEBAQUAA4GNADCBI QKBgQCKxct 5GHz8dFwOnz AM vNj u2b3
oeAv/ EOPf VbInD73Wh+CIYXvnr yhqo99Y/ q47ur WYWAF/ bqHOAMYM i bPr 61 | P8m
CApNYTf / Zsqup/ 70Ixr vzJU7TOl GALNLhHc C+gRnwk KHANnDBUPEABXi X4x FxbTj
NvKW.ZVKGQW Y 6 EFVQ DAQAB

----- END PUBLI C KEY---- -

The DNS text record entry would look like this:

test 2. _domai nKey I'N TXT

"v=DKI ML; p=M & MAOGCSqGCSI b3DQEBAQUAAAGNADCBI QKBgQCl KFLFWICY Df Bug688BJ0daz Q x
+CGEnH443KpnBK8agpJ XSgFAPhI Rvf OyhgHeul
+J50ns SC09RN4f KaFQaQNBf CQpHSMhZpBC3X0G5Bc 1HW) 1At Bl 6Z1r by Fen4CnGYOy Rz DBUO Wsn8QK47bf 3hvoSxgpYlpl
+wl DAQAB; t=s"

Notice that the newlines are take out. Also, notice that the text record is a name value ';' delimited
list of parameters. The p field contains the public key.

192

Chapter 43.

Chapter 43. Body Encryption and
Signing via SMIME

S/MIME (Secure/Multipurpose Internet Mail Extensions) is a standard for public key encryption
and signing of MIME data. MIME data being a set of headers and a message body. Its most often
seen in the email world when somebody wants to encrypt and/or sign an email message they
are sending across the internet. It can also be used for HTTP requests as well which is what the
RESTEasy integration with S/IMIME is all about. RESTEasy allows you to easily encrypt and/or
sign an email message using the S/IMIME standard. While the API is described here, you may
also want to check out the example projects that come with the RESTEasy distribution. It shows
both Java and Python clients exchanging S/IMIME formatted messages with a JAX-RS service.

43.1. Maven settings

You must include the resteasy-crypto project to use the smime framework.

<dependency>
<groupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>resteasy-crypto</artifactld>
<ver si on>3. 0. 9. Fi nal </ versi on>

</ dependency>

43.2. Message Body Encryption

While HTTPS is used to encrypt the entire HTTP message, S/IMIME encryption is used solely
for the message body of the HTTP request or response. This is very useful if you have
a representation that may be forwarded by multiple parties (for example, HornetQ's REST
Messaging integration!) and you want to protect the message from prying eyes as it travels across
the network. RESTEasy has two different interfaces for encrypting message bodies. One for
output, one for input. If your client or server wants to send an HTTP request or response with
an encrypted body, it uses the or g. j boss. rest easy. security. sn ne. Envel opedQut put type.
Encrypting a body also requires an X509 certificate which can be generated by the Java keytool
command-line interface, or the openssl tool that comes installed on many OS's. Here's an example
of using the Envel opedQut put interface:

/'l server side
@vat h("encrypted")

@=ET
publ i ¢ Envel opedQut put get Encrypted()

193

Chapter 43. Body Encryption a...

Cust onmer cust = new Custoner();
cust.setName("Bill");

X509Certificate certificate = ...;
Envel opedQut put out put = new Envel opedCQut put (cust,
Medi aType. APPLI CATI ON_XM__TYPE) ;
out put.setCertificate(certificate);
return output;

Il client side

X509Certificate cert = ...;

Cust oner cust = new Custormer();

cust.setName("Bill");

Envel opedQut put out put = new Envel opedQut put (cust, "application/xm");

out put.setCertificate(cert);

Response res = target.request().post(Entity.entity(output, "application/pkcs7-
m nme"). post();

An EnvelopedOutput instance is created passing in the entity you want to marshal and the media
type you want to marshal itinto. So in this example, we're taking a Customer class and marshalling
it into XML before we encrypt it. RESTEasy will then encrypt the EnvelopedOutput using the
BouncyCastle framework's SMIME integration. The output is a Base64 encoding and would look
something like this:

Cont ent - Type: appl i cation/ pkcs7-m ne; sm me-type=envel oped- dat a;
name="sm me. p7ni

Cont ent - Tr ansf er - Encodi ng: base64

Cont ent - Di sposition: attachnent; filename="sm nme.p7nt

M AGCSqGSI b3DQEHA6 CAM ACAQAXgewwgek CAQAWY) BFMQs wCQYDVQQGEWJI BVTETMVBEGAL UECBVK
U29t ZS1TdGFOZTEhMBB8GALUEChMYSW0ZXJuZXQg V2l kZ2I 0cy BQAHkgTHRKAgkA7oWB1Or i f I Aw
DQYJKoZl hvc NAQEBBQAEgYCE ngPK/ GB4DFI 2p2zmtx ZQ6R+94BqZHdt EWQN2evr cgt Ang+f 21 t | L
xr/ Pi K+8bESWDObCGuCg+k92uYp2r LKl Z5Bx CGh8t RMAk YCI9s HoH2dPaqz UBhIMkj gWIMCX6Q7E130
u9MIGcP740gw 8f NI 31 D4sx/ 0k02/ QangaukeY7uNHz CABgk ghki GOWOBBWEWFAYI KoZl hvcNAwc E
CDRozFLsPnSgol AEQHMj SKAW QbuGQLOWANKWAI +44WJTj Kf 7nGWZv YY8t OCcdnmhDxRSMLLY 682
| m +LTZf OLXzuFGTs CG0U0742N8AAAAAAAAAAAAA

Decrypting an S/IMIME encrypted message requires using the
org.jboss.resteasy.security.smime.Envelopedinput interface. You also need both the private key
and X509Certificate used to encrypt the message. Here's an example:

194

Message Body Signing

/'l server side

@Pat h("encrypted")

@osT

public void post Encrypt ed(Envel opedl nput <Cust oner > i nput)
{

PrivateKey privateKey = ...
X509Certificate certificate = ...
Cust omer cust = input.getEntity(privateKey, certificate);

/'l client side

Cl i ent Request request = new CientRequest("http://1ocal host: 9095/ sm e/
encrypted");

Envel opedl nput i nput = request. get Tar get (Envel opedl nput. cl ass);

Cust oner cust = (Custoner)input.getEntity(Custoner.class, privateKey, cert);

Both examples simply call the getEntity() method passing in the PrivateKey and X509Certificate
instances requires to decrypt the message. On the server side, a generic is used with
Envelopedinput to specify the type to marshal to. On the server side this information is passed
as a parameter to getEntity(). The message is in MIME format: a Content-Type header and body,
so the EnvelopedInput class now has everything it needs to know to both decrypt and unmarshall
the entity.

43.3. Message Body Signing

S/MIME also allows you to digitally sign a message. It is a bit different than the Doseta Digital
Signing Framework. Doseta is an HTTP header that contains the signature. S/IMIME uses the
multipart/signed data format which is a multipart message that contains the entity and the digital
signature. So Doseta is a header, SIMIME is its own media type. Generally | would prefer Doseta
as S/MIME signatures require the client to know how to parse a multipart message and Doseta
doesn't. Its up to you what you want to use.

Resteasy has two different interfaces for creating a multipart/signed message. One for input, one
for output. If your client or server wants to send an HTTP request or response with an multipart/
signed body, it uses the or g. j boss. rest easy. securi ty. sm nme. Si gnedQut put type. This type
requires both the PrivateKey and X509Certificate to create the signature. Here's an example of
signing an entity and sending a multipart/signed entity.

/| server-side

@rat h("si gned")
@=ET

195

Chapter 43. Body Encryption a...

@°r oduces("nul ti part/signed")

publ i ¢ Si gnedQut put get Si gned()

{
Cust oner cust = new Custormer();
cust.setNanme("Bill");

Si gnedQut put out put = new Si gnedQut put (cust,
Medi aType. APPLI CATI ON_XM__TYPE) ;
out put . set Pri vat eKey(pri vat eKey) ;
output.setCertificate(certificate);
return output;

/Il client side

Client client = new ResteasyCient();

WebTarget target = client.target("http://Iocal host: 9095/ sm ne/ si gned");

Cust oner cust = new Custoner();

cust.setName("Bill");

Si gnedQut put out put = new Si gnedQut put (cust, "application/xm");

out put . set Pri vat eKey(pri vat eKey) ;

out put.setCertificate(cert);

Response res = target.request().post(Entity.entity(output, "nultipart/

signed");

An SignedOutput instance is created passing in the entity you want to marshal and the media type
you want to marshal it into. So in this example, we're taking a Customer class and marshalling it
into XML before we sign it. RESTEasy will then sign the SignedOutput using the BouncyCastle
framework's SMIME integration. The output iwould look something like this:

Cont ent - Type: mul ti part/signed; prot ocol ="appl i cati on/ pkcs7-si gnature";
m cal g=shal; boundary="----= Part_0_1083228271.1313024422098"

------ = Part_0_1083228271. 1313024422098
Cont ent - Type: application/ xm
Cont ent - Tr ansf er - Encodi ng: 7bit

<custonmer nane="bill"/>

------ = Part_0_1083228271. 1313024422098

Cont ent - Type: application/ pkcs7-signature; name=smi ne.p7s; sm ne-type=signed-
dat a

Cont ent - Tr ansf er - Encodi ng: base64

Cont ent - Di sposition: attachnent; filenane="sm ne.p7s"

Cont ent - Descri ption: S/M M Cryptographi c Signature

M AGCSqGS! b3DQEHAGCAM ACAQEX Cz AJ BgUr DgMOGgUAM AGCSGGSI b3DQEHAQAAMYI BVZz CCAVMC

196

application/pkcs7-signature

AQEWUj BFMIBWCQYDVQQGEW] BVTETMBEGAL UECBMKU29t ZS1TdGFOZTEhMB8GALUEChMYSW50ZXJ u
ZXQyV2!l kZ21 0cyBQdHkg THRKAgkA70VB10r i f | AWCQYFKwA DAhoFAKBAIVBgGCSqGS| b3DQEJ Az EL
Bgkghki GOwOBBWEWHAYJKoZI hvc NAQGk FMBXDTEx MDgx MTAx VDAY M ow wYJKoZI hvc NAQKEMRYE
FH32Bf R1l 1vzDsht Qvdr gvpGvj ADMAOGCSqGSI b3DQEBAQUABI GAL3KVI 3ul 9cPRUMYc GgQmAf sZ
ObLbAl dO+okrt 8mB7Sr W2LCkl JbEhGHsA sgSUB0/ YunP+Q4! YsVanVf ol 8GgQH3I zt p+Rce2c
y42f 86ZypE7ueynl 4HTPNHf r 78Epy K&z WiZHWMy Mo 70LpXhk5Rgf MDa/ n4TEa9QuTU76at AAAAAA
AAA=

------ = Part_0_1083228271. 1313024422098- -

To unmarshal and verify a signed message requires using the
org.j boss.resteasy. security.sm ne. Si gnedl nput interface. You only need the
X509Certificate to verify the message. Here's an example of unmarshalling and verifying a
multipart/signed entity.

/'l server side

@rat h("si gned")

@osT

@Consunes("nul ti part/signed")

public voi d postSi gned(Si gnedl nput <Custonmer> i nput) throws Exception

{
Custoner cust = input.getEntity();

if (linput.verify(certificate))

{
t hr ow new WebAppl i cati onExcepti on(500);

/1 client side
Client client = new Resteasydient();
WebTarget target = client.target("http://Iocal host: 9095/ sm ne/ si gned");
Si gnedl nput input = target.request().get(Signedlnput.class);
Cust oner cust = (Customner)input.getEntity(Customner.class)
i nput.verify(cert);

43.4. application/pkcs7-signature

application/pkcs7-signature is a data format that includes both the data and the signature in one
ASN.1 binary encoding.

SignedOutput and Signedinput can be used to return application/pkcs7-signature format in binary
form. Just change the @Produces or @Consumes to that media type to send back that format.

Also, if your @Produces or @Consumes is text/plain instead, SignedOutput will be base64
encoded and sent as a string.

197

198

Chapter 44.

Chapter 44. EJB Integration

To integrate with EJB you must first modify your EJB's published interfaces. Resteasy currently
only has simple portable integration with EJBs so you must also manually configure your Resteasy
WAR.

Resteasy currently only has simple integration with EJBs. To make an EJB a JAX-RS resource,
you must annotate an SLSB's @Remote or @Local interface with JAX-RS annotations:

@ocal
@rat h("/Li brary")
public interface Library {

@=ET
@rat h("/ books/ {i sbn}")
public String get Book(@athParan{"isbn") String isbn);

@t at el ess
public class LibraryBean inplenents Library {

Next, in RESTeasy's web.xml file you must manually register the EJB with RESTeasy using the
resteasy.jndi.resources <context-param>

<web- app>
<di spl ay- name>Ar chet ype Created Web Appli cati on</di spl ay- nanme>
<cont ext - par an>
<par am nane>r est easy. j ndi . r esour ces</ par am nane>
<par am val ue>Li br ar yBean/ | ocal </ par am val ue>
</ cont ext - par an®

<l i stener>
<li stener-
cl ass>or g. j boss. resteasy. pl ugi ns. server. servl et. Rest easyBoot strap</Ii stener-
cl ass>
</listener>

199

Chapter 44. EJB Integration

<servl et >
<servl et - nane>Rest easy</ ser vl et - nane>
<servl et -
cl ass>org. j boss. resteasy. pl ugi ns. server. servl et. H t pSer vl et D spat cher </
servl et-cl ass>
</ servl et >

<servl et - mappi ng>
<servl et - name>Rest easy</ ser vl et - nane>
<url-pattern>/*</url-pattern>

</ servl et - mappi ng>

</ web- app>

This is the only portable way we can offer EJB integration. Future versions of RESTeasy will
have tighter integration with JBoss AS so you do not have to do any manual registrations or
modifications to web.xml. For right now though, we're focusing on portability.

If you're using Resteasy with an EAR and EJB, a good structure to have is:

ny-ear. ear

[------ nyejb.jar
[------ rest easy-j axrs. war

I
----\VEB- | NF/ web. xm

----VEB-INF/Iib (nothing)

----All Resteasy jar files

From the distribution, remove all libraries from WEB-INF/lib and place them in a common EAR
lib. OR. Just place the Resteasy jar dependencies in your application server's system classpath.
(i.e. In JBoss put them in server/default/lib)

An example EAR project is available from our testsuite here.

200

Chapter 45.

Chapter 45. Spring Integration

RESTEasy integrates with Spring 3.0.x. We are interested in other forms of Spring integration,
so please help contribute.

45.1. Basic Integration

For Maven users, you must use the resteasy-spring artifact. Otherwise, the jar is available in the
downloaded distribution.

<dependency>
<groupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>resteasy-spring</artifactld>
<versi on>what ever version you are using</version>
</ dependency>

RESTeasy comes with its own Spring ContextLoaderListener that registers a RESTeasy
specific BeanPostProcessor that processes JAX-RS annotations when a bean is created by a
BeanFactory. What does this mean? RESTeasy will automatically scan for @Provider and JAX-
RS resource annotations on your bean class and register them as JAX-RS resources.

Here is what you have to do with your web.xml file

<web- app>
<di spl ay- name>Ar chet ype Created Wb Appli cati on</di spl ay- name>

<l'i stener>
<li stener-
cl ass>org. j boss. resteasy. pl ugi ns. server. servl et. Rest easyBoot strap</Ii st ener-
cl ass>
</listener>

<l i stener>
<li stener-
cl ass>or g. j boss. rest easy. pl ugi ns. spri ng. Spri ngCont ext Loader Li stener</1i st ener-
cl ass>
</listener>

<servlet>
<servl et - name>Rest easy</ servl et - nanme>

201

Chapter 45. Spring Integration

<servl et -
cl ass>org. j boss. resteasy. pl ugi ns. server. servl et. H t pSer vl et D spat cher </
servl et-cl ass>
</servl et>

<servl et - mappi ng>
<servl et - nane>Rest easy</ ser vl et - nane>
<url-pattern>/*</url-pattern>

</ servl et - mappi ng>

</ web- app>

The SpringContextLoaderListener must be declared after ResteasyBootstrap as it uses
ServletContext attributes initialized by it.

If you do not use a Spring ContextLoaderListener to create your bean
factories, then you can manually register the RESTeasy BeanFactoryPostProcessor
by allocating an instance of org.jboss.resteasy.plugins.spring.SpringBeanProcessor.
You can obtain instances of a ResteasyProviderFactory and Registry
from the ServletContext attributes org.jboss.resteasy.spi.ResteasyProviderFactory and
org.jboss.resteasy.spi.Registry. (Really the string FQN of these classes). There is also
a org.jboss.resteasy.plugins.spring.SpringBeanProcessorServietAware, that will automatically
inject references to the Registry and ResteasyProviderFactory from the Servlet Context. (that is,
if you have used RestasyBootstrap to bootstrap Resteasy).

Our Spring integration supports both singletons and the "prototype" scope. RESTEasy handles
injecting @Context references. Constructor injection is not supported though. Also, with the
"prototype" scope, RESTEasy will inject any @*Param annotated fields or setters before the
request is dispatched.

NOTE: You can only use auto-proxied beans with our base Spring integration. You will have
undesirable affects if you are doing handcoded proxying with Spring, i.e., with ProxyFactoryBean.
If you are using auto-proxied beans, you will be ok.

45.2. Spring MVC Integration

RESTEasy can also integrate with the Spring DispatcherServlet. The advantages of using this are
that you have a simpler web.xml file, you can dispatch to either Spring controllers or Resteasy from
under the same base URL, and finally, the most important, you can use Spring ModelAndView
objects as return arguments from @GET resource methods. Setup requires you using the Spring
DispatcherServlet in your web.xml file, as well as importing the springmvc-resteasy.xml file into
your base Spring beans xml file. Here's an example web.xml file:

<web- app>

202

Spring MVC Integration

<di spl ay- name>Ar chet ype Created Web Appli cati on</di spl ay- name>

<servl et >
<servl et - nane>Spri ng</ ser vl et - name>
<servl et -cl ass>org. spri ngframewor k. web. servl et. Di spat cher Servl et ; </
servl et-cl ass>
</servlet>

<servl et - mappi ng>
<servl et - nane>Spri ng</ servl et - nane>
<url-pattern>/*</url-pattern>

</ servl et - mappi ng>

</ web- app>

Then within your main Spring beans xml, import the springmvc-resteasy.xml file

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemaLocati on="
http://wwmv. spri ngfranmewor k. or g/ schena/ cont ext http://
www. spri ngframewor k. or g/ schema/ cont ext/ spring-cont ext-2. 5. xsd
http://ww. springfranework. org/schema/util http://ww. springframework. org/
schema/util/spring-util-2.5.xsd

http://ww. springframewor k. or g/ schena/ beans http://ww. spri ngfranework. or g/
schera/ beans/ spri ng- beans. xsd
">

<I-- Inport basic SpringMWC Resteasy integration -->

<i nport resource="cl asspat h: springnvc-resteasy.xm"/>

You can specify resteasy configuration options by overriding the resteasy.deployment bean which
is an instance of org.jboss.resteasy.spi.ResteasyDeployment. Here's an example of adding media
type suffix mappings as well as enabling the Resteasy asynchronous job service.

<beans xm ns="http://ww. springframework. org/schema/ beans” xm ns: xsi="http://
www. W3. or g/ 2001/ XM_Schema- i nst ance"

203

Chapter 45. Spring Integration

xm ns: p="http://ww. springframework. org/schema/ p" xm ns:context="http://

spri ngframewor k. or g/ schena/ cont ext "
xm ns:util="http://ww.springframework. org/schema/util"
Xsi : schemaLocat i on="

http://ww. springframewor k. or g/ schema/ cont ext http://
www. spri ngframewor k. or g/ schema/ cont ext/ spri ng- cont ext - 2. 5. xsd
http://ww:. springframework. org/ schema/ uti | http://
www. spri ngf ramewor k. org/ schenma/ util/spring-util-2.5. xsd
http: //ww. spri ngframewor k. or g/ schena/ beans http://
www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans. xsd
">
<I-- Inport basic SpringM/C Resteasy integration -->
<i nport resource="cl asspat h: spri ngnvc-resteasy. xm" />
<I-- override the bean definition for deploynent -->
<bean i d="rest easy. depl oynent "
cl ass="org.j boss. resteasy. spi . Rest easyDepl oynent" init-nethod="start" destroy-

nmet hod="st op" >

<property nane="asyncJobServi ceEnabl ed" val ue="true"/>
<property nane="nedi aTypeMappi ngs" >
<map>
<entry key="json" val ue="application/json" />
<entry key="xm" value="application/xm" />
</ map>
</ property>
</ bean>

204

Chapter 46.

Chapter 46. CDI Integration

This module provides integration with JSR-299 (Contexts and Dependency Injection for the Java
EE platform)

46.1. Using CDI beans as JAX-RS components

Both the JAX-RS and CDI specifications introduce their own component model. On the one hand,
every class placed in a CDI archive that fulfills a set of basic constraints is implicitly a CDI bean.
On the other hand, explicit decoration of your Java class with @at h or @r ovi der is required
for it to become a JAX-RS component. Without the integration code, annotating a class suitable
for being a CDI bean with JAX-RS annotations leads into a faulty result (JAX-RS component not
managed by CDI) The resteasy-cdi module is a bridge that allows RESTEasy to work with class
instances obtained from the CDI container.

During a web service invocation, resteasy-cdi asks the CDI container for the managed instance of
a JAX-RS component. Then, this instance is passed to RESTEasy. If a managed instance is not
available for some reason (the class is placed in a jar which is not a bean deployment archive),
RESTEasy falls back to instantiating the class itself.

As aresult, CDI services like injection, lifecycle management, events, decoration and interceptor
bindings can be used in JAX-RS components.

46.2. Default scopes

A CDI bean that does not explicitly define a scope is @ependent scoped by default. This pseudo
scope means that the bean adapts to the lifecycle of the bean it is injected into. Normal scopes
(request, session, application) are more suitable for JAX-RS components as they designate
component's lifecycle boundaries explicitly. Therefore, the resteasy-cdi module alters the default
scoping in the following way:

« If a JAX-RS root resource does not define a scope explicitly, it is bound to the Request scope.

« IfaJAX-RS Provider orj avax. ws. rs. Appl i cat i on subclass does not define a scope explicitly,
it is bound to the Application scope.

Warning

Since the scope of all beans that do not declare a scope is modified by resteasy-
cdi, this affects session beans as well. As a result, a conflict occurs if the scope of a
stateless session bean or singleton is changed automatically as the spec prohibits
these components to be @RequestScoped. Therefore, you need to explicitly define
a scope when using stateless session beans or singletons. This requirement is
likely to be removed in future releases.

205

Chapter 46. CDI Integration

46.3. Configuration within JBoss 6 M4 and Higher

CDl integration is provided with no additional configuration with JBoss AS 6-M4 and higher.

46.4. Configuration with different distributions

Provided you have an existing RESTEasy application, all that needs to be done is to add the
resteasy-cdi jar into your project's WEB- | NF/ | i b directory. When using maven, this can be achieve
by defining the following dependency.

<dependency>
<gr oupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>resteasy-cdi</artifactld>
<versi on>${proj ect.version}</version>
</ dependency>

Furthermore, when running a pre-Servlet 3 container, the following context parameter needs to
be specified in web.xml. (This is done automatically via web-fragment in a Servlet 3 environment)

<cont ext - par an>

<par am nane>r est easy. i nj ector. factory</param nane>

<par am val ue>or g. j boss. rest easy. cdi . Cdi | nj ect or Fact ory</ par am val ue>
</ cont ext - par an>

When deploying an application to a Servlet container that does not support CDI out of the box
(Tomcat, Jetty, Google App Engine), a CDI implementation needs to be added first. Weld-servlet
module [http://docs.jboss.org/weld/reference/latest/en-US/html/environments.html] can be used
for this purpose.

206

http://docs.jboss.org/weld/reference/latest/en-US/html/environments.html
http://docs.jboss.org/weld/reference/latest/en-US/html/environments.html
http://docs.jboss.org/weld/reference/latest/en-US/html/environments.html

Chapter 47.

Chapter 47. Seam Integration

RESTEasy integrates quite nicely with the JBoss Seam framework. This integration is maintained
by the Seam developers and documented there as well. Check out Seam documentation [http://
docs.jboss.org/seam/latest/en-US/html/webservices.html#d0e22078].

207

http://docs.jboss.org/seam/latest/en-US/html/webservices.html#d0e22078
http://docs.jboss.org/seam/latest/en-US/html/webservices.html#d0e22078
http://docs.jboss.org/seam/latest/en-US/html/webservices.html#d0e22078

208

Chapter 48.

Chapter 48. Guice 3.0 Integration

RESTEasy has some simple integration with Guice 3.0. RESTEasy will scan the binding types
for a Guice Module for @Path and @Provider annotations. It will register these bindings with
RESTEasy. The guice-hello project that comes in the RESTEasy examples/ directory gives a nice
example of this.

@at h(" hel I 0")
public class Hel |l oResource

{
@EET
@at h("{name}")
public String hell o(@at hParan("nane") final String name) {
return "Hello " + nane;
}
}

First you start off by specifying a JAX-RS resource class. The HelloResource is just that. Next you
create a Guice Module class that defines all your bindings:

i mport com googl e. i nj ect. Modul e;
i mport com googl e. i nj ect. Bi nder;

public class Hel |l oModul e inpl ements Mdul e

{ public void configure(final Binder binder)
{
bi nder . bi nd(Hel | oResour ce. cl ass);
}
}

You put all these classes somewhere within your WAR WEB-INF/classes or in a JAR
within WEB-INF/lib. Then you need to create your web.xml file. You need to use the
GuiceResteasyBootstrapServletContextListener as follows

<web- app>
<di spl ay- nane>Qui ce Hel | o</ di spl ay- nanme>

<cont ext - par an»

209

Chapter 48. Guice 3.0 Integration

<par am nane>r est easy. gui ce. nodul es</ par am name>
<par am val ue>or g. j boss. rest easy. exanpl es. gui ce. hel | 0. Hel | oModul e</ par am
val ue>
</ cont ext - par an>

<l istener>
<listener-cl ass>

org.j boss. rest easy. pl ugi ns. gui ce. Qui ceRest easyBoot st rapSer vl et Cont ext Li st ener
</listener-cl ass>
</listener>

<servl et >
<servl et - nane>Rest easy</ ser vl et - nane>
<servl et -cl ass>
org.j boss. resteasy. plugi ns. server.servlet. HtpServl et D spatcher
</ servlet-class>
</servlet>

<servl et - mappi ng>
<servl et - name>Rest easy</ servl et - nane>
<url-pattern>/*</url-pattern>

</ servl et - mappi ng>

</ web- app>

GuiceResteasyBootstrapServletContextListener is a subclass of ResteasyBootstrap, so you can
use any other RESTEasy configuration option within your web.xml file. Also notice that there is
a resteasy.guice.modules context-param. This can take a comma delimited list of class names
that are Guice Modules.

48.1. Request Scope

Add the RequestScopeModule to your modules to allow objects to be scoped to the HTTP
request by adding the @RequestScoped annotation to your class. All the objects injectable via
the @Context annotation are also injectable, except ServletConfig and ServletContext.

i mport javax.inject.Inject;
i mport javax.servlet.http. HtpServl et Request;
i mport javax.ws.rs.core. Context;

i mport org.jboss.resteasy. pl ugi ns. gui ce. Request Scoped,;

@request Scoped

210

Binding JAX-RS utilities

public class My ass
{
@ nj ect @ont ext

private H tpRequest request;

48.2. Binding JAX-RS utilities

Add the JaxrsModule to bind javax.ws.rs.ext.RuntimeDelegate,
javax.ws.rs.core.Response.ResponseBuilder, javax.ws.rs.core.UriBuilder,
javax.ws.rs.core.Variant.VariantListBuilder and org.jboss.resteasy.client.ClientExecutor.

48.3. Configuring Stage

You can configure the stage Guice uses to deploy your modules by specific a context param,
resteasy.guice.stage. If this value is not specified, Resteasy uses whatever Guice's default is.

<web- app>
<di spl ay- nane>Qui ce Hel | o</ di spl ay- nane>

<cont ext - par an>
<par am nane>r est easy. gui ce. nodul es</ par am nanme>
<par am val ue>or g. j boss. rest easy. exanpl es. gui ce. hel | 0. Hel | oModul e</ param
val ue>
</ cont ext - par an®

<cont ext - par ank
<par am nanme>r est easy. gui ce. st age</ par am nane>
<par am val ue>PRODUCTI ON</ par am val ue>

</ cont ext - par an>

<l i stener>
<listener-class>

org.j boss. rest easy. pl ugi ns. gui ce. Gui ceRest easyBoot st rapSer vl et Cont ext Li st ener
</listener-class>
</listener>

<servl| et >
<servl et - name>Rest easy</ servl et - nane>
<servl et-cl ass>
org.j boss. resteasy. plugins. server.servlet. H tpServl et Di spatcher
</servl et-cl ass>
</servlet>

211

Chapter 48. Guice 3.0 Integration

<servl et - mappi ng>
<servl et - nane>Rest easy</ ser vl et - nane>
<url-pattern>/*</url-pattern>

</ servl et - mappi ng>

</ web- app>

48.4. Custom Injector creation

GuiceResteasyBootstrapServletContextListener can be extended to allow more flexibility in the
way the Injector and Modules are created. Three methods can be overridden: getModules(),
withInjector() and getStage(). Register your subclass as the listener in the web.xml.

Override getModules() when you need to pass arguments to your modules' constructor or perform
more complex operations.

Override withInjector(Injector) when you need to interact with the Injector after it has been created.

Override getStage(ServletContext) to set the Stage yourself.

<web- app>
<!-- other tags omitted -->
<listener>
<listener-cl ass>

org.j boss. rest easy. pl ugi ns. gui ce. Gui ceRest easyBoot st r apSer vl et Cont ext Li st ener
</listener-class>
</listener>
</ web- app>

public cl ass My Ser vl et Cont ext Li st ener ext ends
Gui ceRest easyBoot st rapSer vl et Cont ext Li st ener
{
@verride

protected List<? extends Mdul e> get Modul es(Servl et Cont ext context)
{

return Arrays. asLi st (new JpaPersi st Modul e("consul ti ng_hours"), new

M/Modul e()) ;

}

@verride

public void withlnjector(lnjector injector)
{

212

Custom Injector creation

i nj ector.getlnstance(PersistService.class).start();

213

214

Chapter 49.

Chapter 49. Resteasy Client API

49.1. JAX-RS 2.0 Client API

JAX-RS 2.0 introduces a new client API so that you can make http requests to your remote
RESTful web services. It is a 'fluent' request building API with really 3 main classes: Client,
WebTarget, and Response. The Client interface is a builder of WebTarget instances. WebTarget
represents a distinct URL or URL template from which you can build more sub-resource
WebTargets or invoke requests on.

There are really two ways to create a Client. Standard way, or you can use the
ResteasyClientBuilder class. The advantage of the latter is that it gives you a few more helper
methods to configure your client.

Cient client = ientBuilder.newdient();

c..oor...

Client client = dientBuilder.newBuilder().build();
WebTarget target = client.target("http://foo.conlresource");
Response response = target.request().get();

String value = response.readEntity(String.class);
response.close(); // You should cl ose connecti ons!

Rest easyClient client = new Resteasyd ientBuilder().build();
Rest easyWebTarget target = client.target("http://foo.com resource");

Resteasy will automatically load a set of default providers. (Basically all classes listed in all
META-INF/services/javax.ws.rs.ext.Providers files). Additionally, you can manually register other
providers, filters, and interceptors through the Configuration object provided by the method call
Client.configuration(). Configuration also lets you set various configuration properties that may be
needed.

Each WebTarget has its own Configuration instance which inherits the components and properties
registered with its parent. This allows you to set specific configuration options per target resource.
For example, username and password.

49.2. Resteasy Proxy Framework

The Resteasy Proxy Framework is the mirror opposite of the JAX-RS server-side specification.
Instead of using JAX-RS annotations to map an incoming request to your RESTFul Web Service
method, the client framework builds an HTTP request that it uses to invoke on a remote RESTful
Web Service. This remote service does not have to be a JAX-RS service and can be any web
resource that accepts HTTP requests.

215

Chapter 49. Resteasy Client API

Resteasy has a client proxy framework that allows you to use JAX-RS annotations to invoke on
a remote HTTP resource. The way it works is that you write a Java interface and use JAX-RS
annotations on methods and the interface. For example:

public interface Sinpledient

{
@EET
@rat h(" basi c")
@°r oduces("text/plain")
String getBasic();

@ur

@rat h(" basi c")
@onsumes("text/ plain")

voi d putBasic(String body);

@ET

@rat h(" quer yPar anm')

@roduces("text/plain")

String get QueryPar am(@uer yParan("paranm') String paran;

@ET

@at h("mat ri xPar ani')

@roduces("text/plain")

String getMatrixParan{ @mtri xParanm("param') String param;

@=ET

@rat h("uri Parani {parant")

@°r oduces("text/plain")

i nt get Uri Param @at hPar am(" parant')int paramn;

Resteasy has a simple API based on Apache HttpClient. You generate a proxy then you can
invoke methods on the proxy. The invoked method gets translated to an HTTP request based on
how you annotated the method and posted to the server. Here's how you would set this up:

Client client = dientFactory. newCient();
WebTarget target = client.target("http://exanple.conl base/uri");
Rest easyWebTarget rtarget = (ResteasyWbTarget)target;

SinpleCient sinple = rtarget. proxy(Sinpledient.class);
client.putBasic("hello world");

216

Abstract Responses

Alternatively you can use the Resteasy client extension interfaces directly:

Rest easyClient client = new ResteasyCientBuilder().build();
Rest easyWebTarget target = client.target("http://exanple.com
base/uri");

SinpleCient sinple = target. proxy(Sinpledient.class);
client.putBasic("hello world");

@CookieParam works the mirror opposite of its server-side counterpart and creates a cookie
header to send to the server. You do not need to use @CookieParam if you allocate your own
javax.ws.rs.core.Cookie object and pass it as a parameter to a client proxy method. The client
framework understands that you are passing a cookie to the server so no extra metadata is
needed.

The framework also supports the JAX-RS locator pattern, but on the client side. So, if you have
a method annotated only with @Path, that proxy method will return a new proxy of the interface
returned by that method.

1. Abstract Responses

Sometimes you are interested not only in the response body of a client request, but also either
the response code and/or response headers. The Client-Proxy framework has two ways to get
at this information

You may return a javax.ws.rs.core.Response.Status enumeration from your method calls:

@ath("/")
public interface MyProxy {
@aosT
Response. St at us updat eSi te(M/Poj o poj0);

Internally, after invoking on the server, the client proxy internals will convert the HTTP response
code into a Response.Status enum.

If you are interested in everything, you can get it with the javax.ws.rs.core.Response class:

217

Chapter 49. Resteasy Client API

@at h(n/n)
public interface LibraryService {

@=ET
@°r oduces("application/xm")
Response get Al | Books();

2. Sharing an interface between client and server

Itis generally possible to share an interface between the client and server. In this scenario, you just
have your JAX-RS services implement an annotated interface and then reuse that same interface
to create client proxies to invoke on the client-side.

49.3. Apache HTTP Client 4.x and other backends

Network communication between the client and server is handled in Resteasy,
by default, by HttpClient (4.x) from the Apache HttpComponents project. In
general, the interface between the Resteasy Client Framework and the network is
found in an implementation of org.jboss.resteasy.client.jaxrs.dientHttpEngine,
and org.jboss.resteasy.client.jaxrs. engi nes. ApacheHtt pd i ent 4Engi ne, which uses
HttpClient (4.x), is the default implementation. Resteasy also ships with the following client
engines, all found in the or g. j boss. rest easy. cli ent.j axrs. engi nes package:

* URLConnectionClientExecutor: uses j ava. net . Ht t pURLConnect i on;
« InMemoryClientExecutor: dispatches requests to a server in the same JVM.

and a client executor may be passed to a specific O i ent Request :

Rest easyClient client = new Resteasyd i entBuil der().httpEngi ne(engine).build();

Resteasy and HttpClient make reasonable default decisions so that it is possible to use
the client framework without ever referencing HttpClient, but for some applications it may
be necessary to drill down into the HttpClient details. ApacheHtt pCl i ent 4Engi ne can be
supplied with an instance of org.apache. http.client. Htpdient and an instance of
or g. apache. htt p. prot ocol . H t pCont ext , which can carry additional configuration details into
the HttpClient layer. For example, authentication may be configured as follows:

/1l Configure HitpClient to authenticate preenptively
/1 by prepopul ating the authentication data cache.

218

Apache HTTP Client 4.x and other backends

/1l 1. Create AuthCache instance
Aut hCache aut hCache = new Basi cAut hCache();

/1 2. Generate BASIC schene object and add it to the |ocal auth cache
Aut hSchene basi cAuth = new Basi cSchene();
aut hCache. put (new Ht t pHost (" si ppycups. bl uenonkeydi anond. cont'), basi cAut h);

/1l 3. Add Aut hCache to the execution context
Basi cHt t pCont ext | ocal Cont ext = new Basi cHt t pCont ext () ;
| ocal Context.setAttribute(d ientContext.AUTH CACHE, authCache);

/1 4. Create client executor and proxy

Defaul tHtpdient httpCient = new DefaultHitpCient();

ApacheH t pl i ent4Engine engine = new ApacheHttpCient4Engine(httpdient,
| ocal Cont ext) ;

Rest easyClient client = new Resteasyd i entBuil der().httpEngi ne(engine).build();

One default decision made by HttpClient and adopted by Resteasy is the use of
org. apache. http.inpl.conn. Si ngl ed i ent ConnManager , which manages a single socket at
any given time and which supports the use case in which one or more invocations are made
serially from a single thread. For multithreaded applications, Si ngl eCl i ent ConnManager may be
replaced by or g. apache. http. i npl . conn. tsccm Thr eadSaf ed i ent ConnManager :

Cl i ent Connecti onManager cm = new Thr eadSaf eCl i ent ConnManager () ;
HtpClient httpClient = new DefaultHtpdient(cn);
ApacheHt t pdl i ent 4Engi ne engi ne = new ApacheHtt pd i ent 4Engi ne(httpdient);

For more information about HttpClient (4.x), see the documentation at http://hc.apache.org/
httpcomponents-client-ga/tutorial/html/ [http://hc.apache.org/httpcomponents-client-ga/tutorial/
html/].

Note. It is important to understand the difference between "releasing” a connection and "closing"
a connection. Releasing a connection makes it available for reuse. Closing a connection frees
its resources and makes it unusable.

Si ngl ed i ent ConnManager manages a single socket, which it allocates to at most a single
invocation at any given time. Before that socket can be reused, it has to be released from its
current use, which can occur in one of two ways. If an execution of a request or a call on a proxy
returns a class other than Response, then Resteasy will take care of releasing the connection.
For example, in the fragments

219

http://hc.apache.org/httpcomponents-client-ga/tutorial/html/
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/

Chapter 49. Resteasy Client API

WebTarget target = client.target("http://Iocal host: 8081/ custoner/123");
String answer = target.request().get(String.class);

or

Rest easyWebTarget target = client.target("http://|ocal host: 8081/ custoner/123");
Regi stryStats stats = target. proxy(RegistryStats.cl ass);
Regi stryData data = stats.get();

Resteasy will release the connection under the covers. The only counterexample is the case in
which the response is an instance of | nput St r eam which must be closed explicitly.

On the other hand, if the result of an invocation is an instance of Response, then Response.close()
method must be used to released the connection.

WebTarget target = client.target("http://Iocal host: 8081/ custoner/123");
Response response = target.request().get();

System out. println(response. getStatus());

response. cl ose();

You should probably execute this in a try/finally block. Again, releasing a connection only makes
it available for another use. It does not normally close the socket.

On the other hand, ApacheHt t pdl i ent 4Engi ne. final i ze() will close any open sockets, but
only if it created the Htt pCl i ent it has been using. If an Ht t pd i ent has been passed into the
ApacheHt t pd i ent 4Execut or, then the user is responsible for closing the connections:

Htpdient httplient = new DefaultHttpCient();
ApacheHt t pd i ent 4Engi ne executor = new ApacheH t pd i ent 4Engi ne(httpdient);

htt pCl i ent. get Connecti onManager (). shut down() ;

Note that if ApacheHtt pdll i ent 4Engi ne has created its own instance of Ht t pCl i ent, it is not
necessary to wait for fi nal i ze() to close open sockets. The C i ent Ht t pEngi ne interface has
acl ose() method for this purpose.

220

Apache HTTP Client 4.x and other backends

Finally, if your javax.ws.rs.client.Client class has created the engine automatically for you, you
should call Client.close() and this will clean up any socket connections.

221

222

Chapter 50.

Chapter 50. AJAX Client

RESTEasy resources can be accessed in JavaScript using AJAX using a proxy API generated
by RESTEasy.

50.1. Generated JavaScript API

RESTEasy can generate a JavaScript API that uses AJAX calls to invoke JAX-RS operations.

Example 50.1. First JAX-RS JavaScript APl example

Let's take a simple JAX-RS API:

@at h("orders")

public interface Orders {

@ath("{id}")

@=ET

public String getOder(@Pat hParam("id") String id){
return "Hello "+id;

}

}

The preceding API would be accessible using the following JavaScript code:

var order = Orders.getOrder({id: 23});

50.1.1. JavaScript API servlet

In order to enable the JavaScript API servlet you must configure it in your web.xml file as such:

<servl et >

<servl et - nane>RESTEasy JSAPI </ servl et - nane>

<servl et-cl ass>org. j boss. resteasy.jsapi.JSAPI Servl et </ servl et -cl ass>
</servlet>

<servl et - mappi ng>
<servl et - name>RESTEasy JSAPI </ ser vl et - nane>
<url-pattern>/rest-js</url-pattern>

</ servl et - mappi ng>

223

Chapter 50. AJAX Client

50.1.2. JavaScript APl usage

Each JAX-RS resource class will generate a JavaScript object of the same name as the declaring
class (or interface), which will contain every JAX-RS method as properties.

Example 50.2. Structure of JAX-RS generated JavaScript

For example, if the JAX-RS resource X defines methods Y and Z:

@ath("/")

public interface X{

@ET

public String Y();

@ur

public void Z(String entity);
}

Then the JavaScript API will define the following functions:

var X = {
Y : function(parans){.},
Z : function(parans){.}

b

Each JavaScript API method takes an optional object as single parameter where each property
is a cookie, header, path, query or form parameter as identified by their name, or the following
special parameters:

A Warning

The following special parameter names are subject to change.

Table 50.1. APl parameter properties

Property name Default Description
$entity The entity to send as a PUT,
POST request.
$contentType As determined by The MIME type of the body
@Consumes. entity sent as the Content-

Type header.

$accepts Determined by @Provides, The accepted MIME types
defaults to */*. sent as the Accept header.

224

JavaScript API usage

Property name Default Description

$callback Set to a function(httpCode,
xmlHttpRequest, value) for
an asynchronous call. If not
present, the call will be
synchronous and return the
value.

$apiURL Determined by container Set to the base URI of
your JAX-RS endpoint, not
including the last slash.

$username If username and password are
set, they will be used for
credentials for the request.

$password If username and password are
set, they will be used for
credentials for the request.

Example 50.3. Using the API

Here is an example of JAX-RS API:

@rat h("foo")
public class Foo{
@ath("{id}")
@ET
public String get(@ueryParan("order") String order, @Header Par an(" X-
Foo") String header,
@t rixParam("col our") String col our, @ooki eParan{"Foo-
Cooki e") String cookie){
&
}
@osT
public void post(String text)({
}
}

We can use the previous JAX-RS API in JavaScript using the following code:

var text = Foo.get({order: 'desc', 'X-Foo': '"hello',
colour: 'blue', 'Foo-Cookie': 123987235444});
Foo. put ({$entity: text});

225

Chapter 50. AJAX Client

50.1.3. Work with @Form

@Form is a RESTEasy specific annotation that allows you to re-use any @*Param annotation
within an injected class. The generated JavaScript API will expand the parameters for use
automatically. Support we have the following form:

public class MyForm {
@-or mPar am("stuff")
private String stuff;

@-or nmPar am(" nunber ")
private int nunber;

@eader Par an(" nyHeader ")
private String header;

And the resource is like:

@ath("/")
public class MyResource {

@osT
public String postForn{ @orm M/Form nyForm {...}

Then we could call the method from JavaScript API like following:

MyResour ce. post Form({stuff:"A", nyHeader:"B", nunber:1});

Also, @Form supports prefix mappings for lists and maps:

public static class Person {
@orm(prefix="tel ephoneNunbers") List<Tel ephoneNunber> tel ephoneNunbers;
@orm(prefix="address") Map<String, Address> addresses;

public static class Tel ephoneNunmber {
@or mPar am(" countryCode") private String countryCode;
@-or mPar am(" nunber™) private String nunber;

226

MIME types and unmarshalling.

public static class Address {
@ornParam("street") private String street;
@-or mPar am(" houseNunber ") private String houseNunber;

@Pat h(" person")
public static class MyResource {
@CST
public void postFornm @orm Person p) {...}

From JavaScript we could call the API like this:

MyResour ce. post For n({
t el ephoneNunbers: [
{"t el ephoneNunber s[0] . count ryCode": 31},
{"t el ephoneNunber s[0] . nunber": 12345678},
{"t el ephoneNunber s[1] . count ryCode": 91},
{"t el ephoneNunber s[1] . nunber": 9717738723}
I
address: [
{"address[I NVO CE] . street":"Main Street"},
{"address[| N\VO CE] . houseNunber ": 2},
{"address[SH PPING . street":"Square One"},
{"addr ess[SHI PPI NG . houseNunber": 13}
]
1)

50.1.4. MIME types and unmarshalling.
The Accept header sent by any client JavaScript function is controlled by the $accepts parameter,

which overrides the @Produces annotation on the JAX-RS endpoint. The returned value however
is controlled by the Content-Type header sent in the response as follows:

Table 50.2. Return values by MIME type

MIME Description

text/xml,application/xml,application/*+xml The response entity is parsed as XML before
being returned. The return value is thus a DOM
Document.

application/json The response entity is parsed as JSON before

being returned. The return value is thus a
JavaScript Object.

Anything else The response entity is returned raw.

227

Chapter 50. AJAX Client

Example 50.4. Unmarshalling example

The RESTEasy JavaScript client APl can automatically unmarshall JSON and XML:

@Pat h("orders")
public interface Orders {

@ Root El enent

public static class Oder {
@ El enent

private String id;

public Oder(){}

public Oder(String id){
this.id =id;

}

}

@ath("{id}/xm")

@=ET

@°r oduces("application/xm")

public Order getOrder XM_(@&at hParan("id") String id){
return new Order (id);

}

@at h("{id}/json")
@EET
@°r oduces("application/json")
public O der getOrder JSON(@at hParan("id") String id){
return new Order(id);
}
}

Let us look at what the preceding JAX-RS API would give us on the client side:

/1 this returns a JSON obj ect
var orderJSON = Orders. get OrderJSON({id: "23"});
orderJSON.id == "23";

I/ this one returns a DOM Docunent whose root elenent is the order, with one
child (id)

/'l whose child is the text node val ue

var order XML = Orders. get Order XM_({id: "23"});

or der XM_. docunent El enent . chi | dNodes[0] . chi | dNodes[0] . nodeVal ue == "23";

228

MIME types and marshalling.

50.1.5. MIME types and marshalling.

The Content-Type header sent in the request is controlled by the $contentType parameter which
overrides the @Consumes annotation on the JAX-RS endpoint. The value passed as entity body
using the $entity parameter is marshalled according to both its type and content type:

Table 50.3. Controlling sent entities

Type MIME Description
DOM Element Empty or text/xml,application/ The DOM Element is
xml,application/*+xml marshalled to XML before

being sent.
JavaScript Object (JSON) Empty or application/json The JSON object is

marshalled to a JSON string
before being sent.

Anything else Anything else The entity is sent as is.

Example 50.5. Marshalling example

The RESTEasy JavaScript client APl can automatically marshall JSON and XML:

@rat h("orders")
public interface Orders {

@M Root El ement

public static class Oder {
@ El emrent

private String id;

public Oder(){}

public Oder(String id){
this.id =id;

}

}

@at h("{id}/ xm ")

@ur

@Consunes("application/xm")

public void put Order XM_(Order order){
/] store order

}

@at h("{id}/json")
@,ur
@Consunes("application/json")

229

Chapter 50. AJAX Client

public void putOderJSON(Order order){
/] store order

}
}

Let us look at what the preceding JAX-RS API would give us on the client side:

/'l this saves a JSON obj ect
O ders. putOrderJSON({$entity: {id: "23"}});

/] It is abit more work with XM

var order = docunent.createEl enent ("order");
var id = docunent. createEl ement ("id");

order . appendChi | d(i d);

i d. appendChi | d(docunent . cr eat eText Node("23"));
Orders. put Order XML({$entity: order});

50.2. Using the JavaScript API to build AJAX queries

The RESTEasy JavaScript API can also be used to manually construct your requests.

50.2.1. The REST object

The REST object contains the following read-write properties:

Table 50.4. The REST object

Property Description

apiURL Set by default to the JAX-RS root URL, used
by every JavaScript client API functions when
constructing the requests.

log Set to a function(string) in order to receive
RESTEasy client API logs. This is useful if you
want to debug your client APl and place the
logs where you can see them.

Example 50.6. Using the REST object

The REST object can be used to override RESTEasy JavaScript API client behaviour:

/1 Change the base URL used by the API:
REST. api URL = "http://api.service.cont;

/1 log everything in a div el enent

230

The REST.Request class

REST. |1 og = function(text){
j Query("#l og-div").append(text);
s

50.2.2. The REST.Request class

The REST.Request class is used to build custom requests. It has the following members:

Table 50.5. The REST.Request class

Member Description

execute(callback)

setAccepts(acceptHeader)
setCredentials(username, password)
setEntity(entity)
setContentType(contentTypeHeader)
setURI(uri)

setMethod(method)

setAsync(async)

addCookie(name, value)

addQueryParameter(name, value)

addMatrixParameter(name, value)

addHeader(name, value)

Executes the request with all the information
set in the current object. The value is never
returned but passed to the optional argument
callback.

Sets the Accept request header. Defaults to */*.
Sets the request credentials.

Sets the request entity.

Sets the Content-Type request header.

Sets the request URI. This should be an
absolute URI.

Sets the request method. Defaults to GET.

Controls whether the request should be
asynchronous. Defaults to true.

Sets the given cookie in the current document
when executing the request. Beware that this
will be persistent in your browser.

Adds a query parameter to the URI query part.

Adds a matrix parameter (path parameter) to
the last path segment of the request URI.

Adds a request header.

Example 50.7. Using the REST.Request class

The REST.Request class can be used to build custom requests:

var r = new REST. Request ();

r.setURI ("http://api.service.comorders/23/json");

r.set Met hod(" PUT");

r.set Cont ent Type("application/json");
r.setEntity({id: "23"});

r.addMat ri xPar anet er (" JSESSI ONI D",

"12309812378123");

231

Chapter 50. AJAX Client

r.execute(function(status, request, entity)({
| og(" Response is "+status);

1),

50.3. Caching Features

RESTEasy AJAX Client works well with server side caching features. But the buggy browsers
cache will always prevent the function to work properly. If you'd like to use RESTEasy's caching
feature with its AJAX client, you can enable 'antiBrowserCache' option:

REST. ant i Browser Cache = true;

The above setting should be set once before you call any APIs.

232

Chapter 51.

Chapter 51. Validation

RESTEasy provides the support for validation mandated by the JAX-RS: Java API for
RESTful Web Services 2.0 [http://www.jcp.org/en/jsr/detail?id=339], given the presence of an
implementation of the Bean Validation specification 1.1 [http://beanvalidation.org/1.1/spec/] such
as Hibernate Validator 5.x [http://www.hibernate.org/subprojects/validator.html].

Validation provides a declarative way of imposing constraints on fields and properties of beans,
bean classes, and the parameters and return values of bean methods. For example, in

@ath("all")
@est C assConstrai nt (5)
public class TestResource

{
@i ze(m n=2, nmax=4)
@pat hPar an{"s")
String s;

private String t;

@51 ze(m n=3)
public String getT()
{

return t;

@rat hParan("t")
public void setT(String t)

{
this.t =t;

@OoSsT

@ath("{s}/{t}/{u}")
@rattern(regexp="[a-c]+")

public String post(@pathParan("u") String u)
{

return u,

the field s is constrained by the Bean Validation built-in annotation @i ze to have between 2 and
4 characters, the property t is constrained to have at least 3 characters, and the Test Resour ce
object is constrained by the application defined annotation @est C assConstr ai nt to have the
combined lengths of s and t less than 5:

233

http://www.jcp.org/en/jsr/detail?id=339
http://www.jcp.org/en/jsr/detail?id=339
http://www.jcp.org/en/jsr/detail?id=339
http://beanvalidation.org/1.1/spec/
http://beanvalidation.org/1.1/spec/
http://www.hibernate.org/subprojects/validator.html
http://www.hibernate.org/subprojects/validator.html

Chapter 51. Validation

@onstraint (val i datedBy = TestCl assVal i dator. cl ass)
@rar get ({ TYPE})

@Ret ent i on(RUNTI ME)

public @nterface TestC assConstr ai nt

{
String nessage() default "Concatenation of s and t nust have |l ength > {val ue}";
Cl ass<?>[] groups() default {};
Cl ass<? extends Payl oad>[] payl oad() default {};
int value();
}
public cl ass Test Cl assVal i dat or i mpl ement s
Constrai nt Val i dat or <Test Cl assConstrai nt, TestResource>
{

int |ength;
public void initialize(Testd assConstraint constraintAnnotation)

{

| ength = constrai nt Annot ati on. val ue();

publ i ¢ bool ean i sVal i d(Test Resource val ue, Constrai nt Val i dat or Cont ext cont ext)

{

boolean b = value.retrieveS().length() + value.getT().length() < |ength;

See the links above for more about how to create validation annotations.

Also, the method parameter u is constrained to have no more than 5 characters, and the return
value of method post is constrained by the built-in annotation @rat t er n to match the regular
expression "[a-c]+".

The sequence of validation constraint testing is as follows:

1. Create the resource and validate field, property, and class constraints.
2. Validate the resource method parameters.

3. If no violations have been detected, call the resource method and validate the return value

51.1. Violation reporting

If a validation problem occurs, either a problem with the validation
definitions or a constraint violation, Resteasy will set the return

234

Violation reporting

header or g. j boss. rest easy. api . val i dati on. Val i dati on. VALI DATI ON_HEADER ("validation-
exception") to "true".

If Resteasy detects a structural validation problem, such as a validation annotation
with a missing validator class, it wil return a String representation of a
javax.validation. Validati onExcepti on. For example

javax. val i dation. Val i dati onExcepti on: HV000028: Unexpected exception during
isvValid call.[org.jboss.resteasy.test.validation. TestValidati onExceptions
$Qt her Val i dati onExcepti on]

If any constraint violations are detected, Resteasy will return a report in one of
a variety of formats. If one of "application/xml" or "application/json" occur in the
"Accept” request header, Resteasy will return an appropriately marshalled instance of
org.j boss.resteasy. api.validation. Viol ati onReport:

@Xm Root El emrent (nanme="vi ol ati onReport")
@Xm Accessor Type(Xm AccessType. Fl ELD)
public class ViolationReport

{

public ArrayLi st <ResteasyConstrai ntViol ati on> getFi el dVi ol ati ons()
{

return fieldViol ati ons;

public ArrayLi st <ResteasyConstrai ntViol ati on> getPropertyViol ati ons()
{

return propertyViol ations;

public ArraylLi st <Rest easyConstrai ntViol ati on> get d assVi ol ati ons()

{

return classViol ati ons;

public ArrayLi st <ResteasyConstrai ntViol ati on> get Paranet er Vi ol ati ons()

{

return paraneterViol ations;

public ArraylLi st <ResteasyConstrai ntViol ati on> get Ret urnVal ueVi ol ati ons()
{

235

Chapter 51. Validation

return returnVal ueViol ati ons;

where or g. j boss. rest easy. api . val i dati on. Rest easyConst r ai nt Vi ol at i on is defined:

@M Root El ement (nane="r est easyConstrai nt Vi ol ati on")
@ Accessor Type(Xm AccessType. Fl ELD)
public class ResteasyConstraintViolation inplenents Serializable

{

/**

* @eturn type of constraint

*/
publ i ¢ Constrai nt Type. Type get Constrai nt Type()
{
return constraint Type;
}
/**

* @eturn description of elenment violating constraint

*/
public String getPath()
{
return path;
}
/**

* @eturn description of constraint violation

*/
public String get Message()
{
return nessage;
}
/**

* @eturn object in violation of constraint

*/
public String getVal ue()
{
return val ue;
}

236

Violation reporting

/**

* @eturn String representation of violation

*/
public String toString()
{
return "[" + type() + "]J\r[" + path + "]J\r[" + nessage + "]J\r[" + value
+ "1\r",
}
| *x

* @eturn String formof violation type

*/
public String type()
{
return constraintType.toString();
}

and or g. j boss. rest easy. api . val i dati on. Const r ai nt Type is the enumeration

public class ConstraintType

{
public enum Type {CLASS, FIELD, PROPERTY, PARAMETER, RETURN VALUE};

If both "application/xml" or "application/json™ occur in the "Accept" request header, the media type
is chosen according to the ranking given by implicit or explicit "q" parameter values. In the case
of a tie, the returned media type is indeterminate.

If neither "application/xml" or "application/json" occur in the "Accept" request header, Resteasy
returns a report with a String representation of each Rest easyConst r ai nt Vi ol at i on, where each
field is delimited by T and T, followed by a '\r', with a final "\r' at the end. For example,

[FI ELD]
[s]
[size nust be between 2 and 4]

[a]

[PROPERTY]
[t]

[size nust be between 3 and 5]

[Z]

[CLASS]

237

Chapter 51. Validation

[]

[Concatenation of s and t nmust have length > 5]
[org.jboss. resteasy. validation. Test Resour ce@8467a6f]

[PARAMETER]
[test. <cross-paraneter>]
[Paranmeters nust total <= 7]

[[s, 711

[RETURN_VALUE]

[g.<return val ue>]

[size nust be between 2 and 4]
[abcde]

where the four fields are

1. type of constraint

2. path to violating element (e.g., field name, class hame, method name and parameter name)
3. message

4. violating element

The Vi ol ati onReport can be reconsititued from the St ri ng as follows:

ResteasyClient client = new Resteasyd ientBuilder().build();
I nvocation. Bui | der request = client.target(...).request();
Response response = request.get();
if
(Bool ean. val uef (r esponse. get Header s() . get Fi rst (Val i dati on. VALI DATI ON_HEADER)))
{

String s = response.getEntity(String.class);
Vi ol ati onReport report = new Viol ati onReport(s);

If the path field is considered to be too much server side information, it can be surpressed by
setting the context parameter "resteasy.validation.suppress.path” to "true". In that case, "*" will
be returned in the path fields.

51.2. Bean Validation 1.1

The form of validation mandated by the JAX-RS 2.0 specification, based on Bean Validation
1.1, is supported by the RESTEasy module resteasy-validator-provider-11, which produces the
artifact resteasy-validator-provider-11-<version>.jar. Validation is turned on by default (assuming
resteasy-validator-provider-11-<version>.jar is available), though parameter and return value

238

Bean Validation 1.0

validation can be turned off or modified in the validation.xml configuration file. See the Hibernate
Validator [http://docs.jboss.org/hibernate/validator/5.0/reference/en-US/html/] documentation for
the details. Wildfly 8.x will ship with Hibernate Validator 5.x.

51.3. Bean Validation 1.0

Validation is not included in the original JAX-RS specification, but RESTEasy 2.x provides a form
of validation, including parameter and return value validation, based on Bean Validation 1.0 plus
Hibernate 4.x extensions. For applications running in the context of Hibernate Validation 4.x,
RESTEasy 3.x inherits the validation semantics from RESTEasy 2.x. This version of validation
is in the RESTEasy module resteasy-hibernatevalidate-provider, which produces the artifact
resteasy-hibernatevalidator-provider-<version> jar. It follows the validation sequence given in the
first section, detecting field, property, class, parameter, and return value constraints, though with
a somewhat less rich semantics than resteasy-validator-provider-11.

Unlike resteasy-validator-provider-11, resteasy-hibernatevalidate-provider does not do
validation testing by default. Validation must be turned on. There are two relevent
annotations - org. j boss. rest easy. pl ugi ns. val i dati on. hi ber nat e. Val i dat eRequest and
org. j boss.resteasy. pl ugi ns. val i dati on. hi ber nat e. DoNot Val i dat eRequest - that are
used to indicate what needs validation or not. We can tell RESTEasy to validate any method in
a resource annotating the resource:

@Pat h("resour cePat h")
@al i dat eRequest
public interface Resource {

@aosT
@at h("insert")
public String insert(...

@ET
@ath("list")
public String list(...

We can tell it to validate just some methods in an interface:

@Pat h("resour cePat h")
public interface Resource {

@CsT
@at h("insert")

239

http://docs.jboss.org/hibernate/validator/5.0/reference/en-US/html/
http://docs.jboss.org/hibernate/validator/5.0/reference/en-US/html/
http://docs.jboss.org/hibernate/validator/5.0/reference/en-US/html/

Chapter 51. Validation

@v/al i dat eRequest
public String insert(...

@=ET
@ath("list")
public String list(...

This way RESTEasy will only trigger validation in insert method. It's possible to say what methods
you don't want to be validated:

@Pat h("resourcePat h")
@v/al i dat eRequest
public interface Resource {

@osT
@rat h("insert")
public String insert(...

@CET

@ath("list")

@oNot Val i dat eRequest
public String list(...

51.4. Validation Service Providers

RESTEasy obtains a bean validation implemenation by looking in the
available META-INF/services/javax.ws.rs.Providers files for an implementation of
Cont ext Resol ver <Gener al Val i dat or >, where or g. j boss. rest easy. spi . Gener al Val i dat or
is

public interface General Vali dator

{

/**

* Validates all constraints on {@ode object}.
*
* @aram obj ect object to validate
* @aramgroups the group or list of groups targeted for validation (defaults to
t {@ink Default})
* @eturn constraint violations or an enpty set if none

240

Validation Service Providers

* @hrows ||l egal Argument Exception if object is {@ode null}

* or if {@ode null} is passed to the varargs groups
* @hrows Validati onException if a non recoverable error happens
* during the validation process
*/
public abstract void validate(HttpRequest request, Object object, Cass<?
>... groups);
/**

* Validates all constraints placed on the paraneters of the given nethod.

*

* @aram <T> the type hosting the method to validate

* @aram obj ect the object on which the nethod to validate is invoked

* @aram nethod the nethod for which the paraneter constraints is validated

* @ar am par anet erVal ues the values provided by the caller for the given
met hod' s

* paraneters
* @aramgroups the group or |ist of groups targeted for validation (defaults to
* {@ink Default})
* @eturn a set with the constraint violations caused by this validation;
* will be enpty if no error occurs, but never {@ode null}
* @hrows |1 egal Argunent Exception if {@ode null} is passed for any of
the paraneters
* or if parameters don't match with each other
* @hrows Validati onException if a non recoverable error happens during the
2 val i dati on process
*/
publ i c abstract voi d val i dat eAl | Par anet er s(Ht t pRequest request, Obj ect object,
Met hod net hod, Object[] paraneterVal ues, C ass<?>... groups);
/**

* Validates all return value constraints of the given nethod.
*
* @aram <T> the type hosting the method to validate
* @ar am obj ect the object on which the nethod to validate is invoked
* @aramnet hod t he nmet hod for which the return val ue constraints is validated
* @aramreturnValue the val ue returned by the given method
* @aramgroups the group or Iist of groups targeted for validation (defaults to

* {@ink Default})
* @eturn a set with the constraint violations caused by this validation;
* will be enpty if no error occurs, but never {@ode null}
* @hrows |Il1egal Argunent Exception if {@ode null} is passed for any of
the object,
* nmet hod or groups paraneters or if paranmeters don't match with

each ot her
* @hrows ValidationException if a non recoverable error happens during the
* val i dati on process
*/
public abstract void validateRet urnVal ue(

241

Chapter 51. Validation

Ht t pRequest request, Cbject object, Method nethod, Cbject returnVal ue,
Class<?>... groups);

/**

* Indicates if validation is turned on for a class.

*

* @aramclazz Cass to be exam ned

* @eturn true if and only if validation is turned on for clazz
*/

public abstract bool ean isValidatabl e(d ass<?> cl azz);

/**

* Indicates if validation is turned on for a nethod.

*

* @aram nmet hod nmet hod to be exam ned

* @eturn true if and only if validation is turned on for nethod
*/

public abstract bool ean i sMet hodVal i dat abl e(Met hod net hod) ;

voi d checkVi ol ati ons(Htt pRequest request);

The methods and the javadoc are adapted from the Bean Validation 1.1 classes
javax.val i dation. Val i dator and j avax. val i dati on. execut abl e. Execut abl eval i dat or .

RESTEasy supplies two implementations of General validator, in the modules
resteasy-validator-provider-11 and resteasy-hibernatevalidator-provider. An alternative
implementation may be supplied by implementing Cont ext Resol ver <Gener al Val i dat or > and
org.j boss. resteasy. spi.validation.General Val i dator.

A validator intended to function in the presence of CDI must also implement the subinterface

public interface General ValidatorCDI extends Ceneral Val i dat or
{

/**

* Indicates if validation is turned on for a class.
*
* This method should be called fromthe resteasy-jaxrs nodule. It should
* test if injectorFactor is an instance of CdilnjectorFactory, which indicates
* that CDI is active. |If so, it should return false. OGtherw se, it should
* return the sane val ue returned by General Validator.isValidatable().
*
* @aramclazz dass to be exam ned
* @araminjectorFactory the InjectorFactory used for clazz
* @eturn true if and only if validation is turned on for clazz
*/
publ i ¢ bool ean i sVal i dat abl e(d ass<?> cl azz, I njectorFactory i njectorFactory);

242

Validation Service Providers

/**

* Indicates if validation is turned on for a class.

* This method should be called only fromthe resteasy-cdi nodul e.
*

* @aramclazz dass to be exam ned

* @eturn true if and only if validation is turned on for clazz
*/

public abstract bool ean isValidatabl eFronCDl (O ass<?> cl azz);

/**
* Throws a ResteasyViol ati onException if

been det ect ed.
* The nmethod should be called only fromthe resteasy-cdi nodul e.
* @aram r equest
*/
public void checkViol ati onsfronCDI (Htt pRequest request);

any validation violations have

/**
* Throws a Rest easyVi ol ati onException if either a ConstraintViol ati onException

or a
* ResteasyConstraintViolati onException is enbedded in the cause hierarchy

of e.
*

* @aram request

* @aram e

*/
public void checkFor ConstraintViol ati ons(Htt pRequest request, Exception e);

Both supplied validators implement GeneralValidatorCDI.

243

244

Chapter 52.

Chapter 52. Maven and RESTEasy

JBoss's Maven Repository is at: http://repository.jboss.org/nexus/content/groups/public/

Here's the pom.xml fragment to use. Resteasy is modularized into various components. Mix and
max as you see fit. Please replace 3.0.9.Final with the current Resteasy version you want to use.

<repositories>
<repository>
<i d>j boss</i d>
<url >http://repository.jboss. org/ nexus/ cont ent/groups/ public/</url>
</repository>
</repositories>
<dependenci es>
<l-- core library -->
<dependency>
<groupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>resteasy-jaxrs</artifactld>
<version>3.0.9. Fi nal </ versi on>
</ dependency>
<dependency>
<groupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>resteasy-client</artifactld>
<version>3.0.9. Fi nal </ versi on>
</ dependency>

<l-- optional nodules -->

<I-- JAXB support -->

<dependency>
<groupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>resteasy-jaxb-provider</artifactld>
<versi on>3.0. 9. Fi nal </ versi on>

</ dependency>

<l-- nultipart/formdata and nultipart/nm xed support -->

<dependency>
<groupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>resteasy-multipart-provider</artifactld>
<ver si on>3. 0. 9. Fi nal </ ver si on>

</ dependency>

<l-- Resteasy Server Cache -->

<dependency>
<groupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>resteasy-cache-core</artifactld>
<versi on>3. 0. 9. Fi nal </ versi on>

245

Chapter 52. Maven and RESTEasy

</ dependency>

<!-- Ruby YAM. support -->

<dependency>
<groupl d>or g. j boss. rest easy</ groupl d>
<artifactld>resteasy-yan -provider</artifactld>
<versi on>3.0. 9. Fi nal </ versi on>

</ dependency>

<l-- JAXB + Atom support -->

<dependency>
<groupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>resteasy-atomprovider</artifactld>
<ver si on>3. 0. 9. Fi nal </ ver si on>

</ dependency>

<l-- Spring integration -->

<dependency>
<groupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>resteasy-spring</artifactld>
<versi on>3.0. 9. Fi nal </ versi on>

</ dependency>

<l-- Cuice integration -->

<dependency>
<groupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>resteasy-guice</artifactld>
<ver si on>3. 0. 9. Fi nal </ ver si on>

</ dependency>

<!'-- Asynchronous HITP support with Servliet 3.0 -->

<dependency>
<groupl d>or g. j boss. rest easy</ groupl d>
<artifactld>async-http-servlet-3.0</artifactld>
<ver si on>3. 0. 9. Fi nal </ ver si on>

</ dependency>

</ dependenci es>

There is also a pom that can be imported so the versions of the individual modules do not have
to be specified. Note that maven 2.0.9 is required for this.

<dependencyManagenent >
<dependenci es>
<dependency>
<groupl d>or g. j boss. rest easy</ gr oupl d>
<artifactld>resteasy-bonx/artifactld>
<ver si on>3. 0. 9. Fi nal </ ver si on>

246

<t ype>ponx/type>
<scope>i nport </ scope>
</ dependency>
</ dependenci es>
</ dependencyManagenent >

247

248

Chapter 53.

Chapter 53. JBoss AS 5.x
Integration

Resteasy has no special integration with JBoss Application Server so it must be configured and
installed like any other container. There are some issues though. You must make sure that there
is not a copy of servlet-api-xxx.jar in your WEB-INF/lib directory as this may cause problems. Also,
if you are running with JDK 6, make sure to filter out the JAXB jars as they come with JDK 6.

249

250

Chapter 54.

Chapter 54. JBoss AS 6/7
Integration

RESTEasy is preconfigured and completely integrated with JBoss 6-M4 and higher. You can use
it with EJB and CDI and you can rely completely on JBoss for scanning for your JAX-RS services
and deploying them. All you have to provide is your JAX-RS service classes packaged within a
WAR either as POJOs, CDI beans, or EJBs and provide an empty web.xml file as follows:

<web- app version="3.0" xm ns="http://java.sun.com xm /ns/javaee"
xm ns: xsi ="http://ww. wW3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://java. sun. coni xm /ns/javaee http://
j ava. sun. com xm / ns/ j avaee/ web- app_3_0. xsd" >
</ web- app>

251

252

Chapter 55.

Chapter 55. Documentation
Support

There's a great javadoc engine that allows you to generate javadocs for JAX-RS and JAXB
calledJAX-Doclet [http://www.lunatech-labs.com/open-source/jax-doclets]. Follow the link for
more details.

253

http://www.lunatech-labs.com/open-source/jax-doclets
http://www.lunatech-labs.com/open-source/jax-doclets

254

Chapter 56.

Chapter 56. Migration from older
versions

56.1. Migrating from 3.0.7 to 3.0.9

* You may need to upgrade your JDK to the latest 1.7.x or 1.8 releases if you are using JAXB.
There's some entity expansion security vulnerabilities that we had to patch and it seems the fix
doesn't work on earlier versions of JDK 1.7.

« ContainerRequestContext.setRequestUri() method behavior has been changed to match the
behavior of the JAXRS RI. The relative URI must be equal to are an extension of the base URI
or it will not work. i.e.

cont ext . set Request Uri (URI . create("https://foo.conl base"),

URI . create("https://foo.com base/path")); // |egal
cont ext.set Request Uri (URI . create("https://foo.conl base"),

URI .create("/path")); [/ "path" is ignored
/1 if base uri is "http://foo.conl base”
cont ext . set Request Uri (URI . create("http://foo.com base/path")); // |egal
cont ext . set Request Uri (URI . create("/path")); // ignored

56.2. Migrating from 3.0.6 to 3.0.7

« Scannotation has been removed. If you are not running within an application server you must
use the ResteasyServletlnitializer. See docs for more detail.

56.3. Migrating from 3.0to 3.0.4

e Servlet 3.0 deployments within standalone Tomcat or Jetty can now use the Resteasy
Servl et Cont ai nerlnitializer. This allows tighter integration with Resteasy much like you
have within JBoss/Wildfly. Check out the installation/configuration section of this document for
more information.

56.4. Migrating from 3.0-beta-6 and 3.0-rc-1

e« Form parameters are now read via a provider where earlier they were read from
HttpServiletRequest.getParameterMap(). This may break deployments that depend on that
behavior, i.e. if you have a servlet filter that calls that very method. For those situations | added
the switch resteasy.use.container.form.params

255

Chapter 56. Migration from ol...

» The JAX-RS TCK has become very strict with a ton more tests. | can't remember them all, but
there are a number of edge cases which earlier Resteasy releases misinterpreted.

* Any Failure exceptions in the SPI now have a corresponding JAX-RS 2.0 exception, so they
have been deprecated Resteasy no longer uses these old SPI exceptions internally. It now uses
the JAX-RS 2.0 ones.

* A number of SPIs have changed. Shouldn't be an issue for those of you who use Restasy as-
is. Specifically InjectorFactory and Registry have changed.

56.5. Migrating from 3.0-beta-5 and 3.0-beta-6

e The JAX-RS 2.0 TCK has become very very strict in terms of the matching algorithm.
Unfortunately, the matching algorithm is quite poor so there are a number of resource schemes
that will no longer match. For example, resource classes are scanned for a best match, other
are ignored in the match. Resource locators are not visited unless they are a best match over
resource methods. There is one config switch | added so that Resteasy will ignore the Spec
defined class expression filtering step and instead match base on the full expressions of each
JAX-RS method. resteasy.wider.request.matching. Set that to true and you will at least be able
to avoid that.

e The JAX-RS TCK has become very strict with a ton more tests. | can't remember them all, but
there are a number of edge cases which earlier Resteasy releases misinterpreted.

« Any Failure exceptions in the SPI now have a corresponding JAX-RS 2.0 exception, so they
have been deprecated Resteasy no longer uses these old SPI exceptions internally. It now uses
the JAX-RS 2.0 ones.

« A number of SPIs have changed. Shouldn't be an issue for those of you who use Restasy as-
is. Specifically InjectorFactory and Registry have changed.

56.6. Migrating from 3.0-beta-4 and 3.0-beta-5

« JSONP support is no longer on by default. A few users have complained that it is a security
hole for their applications.

« A number of SPIs have changed. Shouldn't be an issue for those of you who use Restasy as-
is. Specifically InjectorFactory and Registry have changed.

56.7. Migrating from 3.0-beta-2 and 3.0-beta-4

« The JAX-RS 2.0 class ClientFactory no longer exists. It has been replaced with ClientBuilder.
You can still call newClient(), but there is now an additional builder interface. Likewise,
there is no ResteasyClientFactory. We also have an extension to ClientBuilder called
ResteasyClientBuilder. So docs for more details.

256

Migrating from 3.0-beta-1 and 3.0-beta-2

* Filter execution and exception handling now matches the JAX-RS 2.0 spec. Exceptions
thrown from filters/interceptors can now be mapped if possible. Responses returned from
ExceptionMappers are now filtered.

56.8. Migrating from 3.0-beta-1 and 3.0-beta-2

« The constructors for ResteasyClient class are no longer public. You need to use the new
ResteasyClientBuilder class. One thing to note is that when a ResteasyClient is created by a
builder, it no longer uses ResteasyProviderFactory.getinstance(), but instead instantiates a new
one. This will probably not effect most uses.

56.9. Migrating from 2.x to 3.0-beta-1

» Resteasy manual client API, interceptors, StringConverters, StringParamterConverters, and
Async HTTP APIs have all been deprecated and will be removed possibly in a later release.
There is now a JAX-RS 2.0 equivalent for each of these things.

 resteasy-crypto: Signedinput and SignedOutput must have a multipart/signed content type set
either through the request or response object, or by annotation @Consumes/@Produces

« Server-side cache setup has been changed. Please see documentation for more details.
* The security filters for @RolesAllowed, etc. now return 403, Forbidden instead of 401.

« Most add() methods have been removed or made protected in ResteasyProviderFactory. Use
registerProvider() and registerProviderinstance() methods.

« The new JAX-RS 2.0 client-side filters will not be bound and run when you are using Resteasy's
old client api.

« On server-side, all old Resteasy interceptors can run in parallel with the new JAX-RS 2.0 filter
and interceptor interfaces.

* Some SPIs have changed. This should not effect applications unless you are doing something
you aren't supposed to do.

« The async tomcat and async jboss web modules have been removed. If you are not running
under Servlet 3.0, async HTTP server-side, will be faked and run synchronously in same request
thread.

56.10. Migrating from 2.3.2to 2.3.3

« Multipartinput has a new close() method. If you have a read body that is Multipartinput or one
of its subinterfaces, then you must call this method to clean up any temporary files created.
Otherwise, these possible temporary files are deleted on GC or JDK shutdown. Other multipart
providers clean up automatically.

257

Chapter 56. Migration from ol...

56.11. Migrating from 2.3.0to 2.3.1

 sjsxp has been removed as a dependency for the Resteasy JAXB provider

56.12. Migrating from 2.2.x to 2.3

» The Apache Abdera integration has been removed as a project. If you want the integration back,
please ping our dev lists or open a JIRA.

e Apache Http Client 4.x is now the default underlying client HTTP mechanism.
If there are problems, you can change the default mechanism by calling
ClientRequest.setDefaultExecutorClass.

 ClientRequest no longer supports a shared default executor. The cr eat ePer Request | nst ance
parameter has been removed from C i ent Request . set Def aul t Execut or Cl ass() .

 resteasy-doseta module no longer exists. It is now renamed to the resteasy-crypto module and
also includes other things beyond doseta.

« Doseta work has be refactored a bit and may have broken backward compatibility.
« Jackson has been upgraded from 1.6.3 to 1.8.5. Let me know if there are any issues.

» Form parameter processing behavior was modified because of RESTEASY-574. If you are
having problems with form paramater processing on Tomcat after this fix, please log a JIRA or
contact the resteasy-developers email list.

e« Some subtle changes were made to ExceptionMapper handling so that you can write
ExceptionMappers for any exception thrown internally or within your application. See JIRA Issue
RESTEASY-595 for more details. This may have an effect on existing applications that have an
ExceptionMapper for RuntimeException in that you will start to see Resteasy internal exceptions
being caught by this kind of ExceptionMapper.

* The resteasy-cache (Server-side cache) will now invalidate the cache when a PUT, POST, or
DELETE is done on a particular URI.

56.13. Migrating from 2.2.0to 2.2.1

* Had to upgrade JAXB libs from 2.1.x to 2.2.4 as there was a concurrency bug in JAXB impl.

56.14. Migrating from 2.1.x to 2.2

» ClientRequest.getHeaders() always returns a copy. It also converts the values within
ClientRequest.getHeadersAsObjects() to string. If you add values to the map returned by
getHeaders() nothing happen. Instead add values to the getHeadersAsObjects() map. This

258

Migrating from 2.0.x to 2.1

allows non-string header objects to propagate through the MessageBodyWriter interceptor and
ClientExecutor interceptor chains.

56.15. Migrating from 2.0.x to 2.1

« Slf4jis nolonger the default logging mechanism for resteasy. Resteasy also no longer ships with
SLF4J libraries. Please read the logging section in the Installation and Configuration chapter
for more details.

« The constructor used to instantiate resource and provider classes is now picked based on the
requirements of the JAX-RS specification. Specifically, the public constructor with the most
arguments is picked. This behavior varies from previous versions where a no-arg constructor
is preferred.

56.16. Migrating from 1.2.x to 2.0

* TJWS has been forked to fix some bugs. The new groupld is org.jboss.resteasy, the artifactld
is tjws. It will match the resteasy distribution version

» Please check out the JBoss 6 integration. It makes things a lot easier if you are deploying in
that environment

e There is a new Filter implementation that is the preferred deployment mechanism. Servlet-
based deployments are still supported, but it is suggested you use to using a FilterDispatcher.
See documentation for more details.

« As per required by the spec List or array injection of empty values will return an empty collection
or array, not null. l.e. (@QueryParam("name") List<String> param) param will be an empty List.
Resteasy 1.2.x and earlier would return null.

« We have forked TJWS, the servlet container used for embedded testing into the group
org.jboss.resteasy, with the artifact id of tjws. You will need to remove these dependencies from
your maven builds if you are using any part of the resteasy embeddable server. TIWS has a
number of startup/shutdown race conditions we had to fix in order to make unit testing viable.

» Spring integration compiled against Spring 3.0.3. It may or may not still work with 2.5.6 and lower

56.17. Migrating from 1.2.GA to 1.2.1.GA

Methods @Deprecated within 1.2.GA have been removed. This is in the Client Framework and
has to do with all references to Apache HTTP Client. You must now create an ClientExecutor if
you want to manage your Apache HTTP Client sessions.

56.18. Migrating from 1.1to 1.2

* The resteasy-maven-import artifact has been renamed to resteasy-bom

259

Chapter 56. Migration from ol...

» Jettison and Fastinfoset have been broken out of the resteasy-jaxb-provider maven module.
You will now need to include resteasy-jettison-provider or resteasy-fastinfoset-provider if you
use either of these libraries.

« The constructors for ClientRequest that have a HttpClient parameter (Apache Http Client 3.1
API) are now deprecated. They will be removed in the final release of 1.2. You must create a
Apache hTTP Client Executor and pass it in as a parameter if you want to re-use existing Apache
HttpClient sessions or do any special configuration. The same is true for the ProxyFactoyr
methods.

« Apache HttpClient 4.0 support is available if you want to use it. I've had some trouble with it so
it is not the default implementation yet for the client framework.

« It is no longer required to call RegisterBuiltin.register() to initialize the set of providers. Too
many users forgot to do this (include myself!). You can turn this off by calling the static method
ResteasyProviderFactory.setRegisterBuiltinByDefault(false)

e The Embedded Container's API has changed to use
org.jboss.resteasy.spi.ResteasyDeployment. Please see embedded documentation for more
details.

260

Chapter 57.

Chapter 57. Books You Can Read

There are a number of great books that you can learn REST and JAX-RS from

« RESTful Web Services [http://oreilly.com/catalog/9780596529260/] by Leonard Richardson and
Sam Ruby. A great introduction to REST.

e RESTful Java with JAX-RS [http://oreilly.com/catalog/9780596158040/] by Bill Burke. Overview
of REST and detailed explanation of JAX-RS. Book examples are distributed with RESTEasy.

e« RESTful Web Services Cookbook [http://oreilly.com/catalog/9780596808679/] by Subbu
Allamaraju and Mike Amundsen. Detailed cookbook on how to design RESTful services.

261

http://oreilly.com/catalog/9780596529260/
http://oreilly.com/catalog/9780596529260/
http://oreilly.com/catalog/9780596158040/
http://oreilly.com/catalog/9780596158040/
http://oreilly.com/catalog/9780596808679/
http://oreilly.com/catalog/9780596808679/

262

	RESTEasy JAX-RS
	Table of Contents
	Preface
	Chapter 1. Overview
	Chapter 2. License
	Chapter 3. Installation/Configuration
	3.1. Upgrading Resteasy Within JBoss AS 7
	3.2. Upgrading Resteasy Within JBoss EAP 6.1
	3.3. Upgrading Resteasy Within Wildfly
	3.4. Configuring in JBoss AS 7, EAP, and Wildfly
	3.4.1. Resteasy Modules in AS7, EAP6.1, Wildfly

	3.5. Standalone Resteasy in Servlet 3.0 Containers
	3.6. Standalone Resteasy in Older Servlet Containers
	3.7. Configuration Switches
	3.8. javax.ws.rs.core.Application
	3.9. RESTEasy as a ServletContextListener
	3.10. RESTEasy as a servlet Filter
	3.11. RESTEasyLogging

	Chapter 4. Using @Path and @GET, @POST, etc.
	4.1. @Path and regular expression mappings

	Chapter 5. @PathParam
	5.1. Advanced @PathParam and Regular Expressions
	5.2. @PathParam and PathSegment

	Chapter 6. @QueryParam
	Chapter 7. @HeaderParam
	Chapter 8. Linking resources
	8.1. Link Headers
	8.2. Atom links in the resource representations
	8.2.1. Configuration
	8.2.2. Your first links injected
	8.2.3. Customising how the Atom links are serialised
	8.2.4. Specifying which JAX-RS methods are tied to which resources
	8.2.5. Specifying path parameter values for URI templates
	8.2.5.1. Loading URI template values from the entity
	8.2.5.2. Specifying path parameters manually

	8.2.6. Securing entities
	8.2.7. Extending the UEL context
	8.2.8. Resource facades

	Chapter 9. @MatrixParam
	Chapter 10. @CookieParam
	Chapter 11. @FormParam
	Chapter 12. @Form
	Chapter 13. @DefaultValue
	Chapter 14. @Encoded and encoding
	Chapter 15. @Context
	Chapter 16. JAX-RS Resource Locators and Sub Resources
	Chapter 17. JAX-RS Content Negotiation
	17.1. URL-based negotiation
	17.2. Query String Parameter-based negotiation

	Chapter 18. Content Marshalling/Providers
	18.1. Default Providers and default JAX-RS Content Marshalling
	18.2. Content Marshalling with @Provider classes
	18.3. Providers Utility Class
	18.4. Configuring Document Marshalling

	Chapter 19. JAXB providers
	19.1. JAXB Decorators
	19.2. Pluggable JAXBContext's with ContextResolvers
	19.3. JAXB + XML provider
	19.3.1. @XmlHeader and @Stylesheet

	19.4. JAXB + JSON provider
	19.5. JAXB + FastinfoSet provider
	19.6. Arrays and Collections of JAXB Objects
	19.6.1. JSON and JAXB Collections/arrays

	19.7. Maps of JAXB Objects
	19.7.1. JSON and JAXB maps
	19.7.2. Possible Problems with Jettison Provider

	19.8. Interfaces, Abstract Classes, and JAXB
	19.9. Configurating JAXB Marshalling

	Chapter 20. Resteasy Atom Support
	20.1. Resteasy Atom API and Provider
	20.2. Using JAXB with the Atom Provider

	Chapter 21. JSON Support via Jackson
	21.1. Using Jackson 1.9.x Outside of JBoss AS7
	21.2. Using Jackson 1.9.x Inside of JBoss AS7
	21.3. Using Jackson 2.2.x Outside of JBoss AS7
	21.4. Using Jackson 2.2.x Inside of JBoss AS7
	21.5. Additional Resteasy Specifics
	21.6. Possible Conflict With JAXB Provider
	21.7. JSONP Support
	21.8. Jackson JSON Decorator

	Chapter 22. JSON Support via Java EE 7 JSON-P API
	Chapter 23. Multipart Providers
	23.1. Input with multipart/mixed
	23.2. java.util.List with multipart data
	23.3. Input with multipart/form-data
	23.4. java.util.Map with multipart/form-data
	23.5. Input with multipart/related
	23.6. Output with multipart
	23.7. Multipart Output with java.util.List
	23.8. Output with multipart/form-data
	23.9. Multipart FormData Output with java.util.Map
	23.10. Output with multipart/related
	23.11. @MultipartForm and POJOs
	23.12. XML-binary Optimized Packaging (Xop)
	23.13. Note about multipart parsing and working with other frameworks
	23.14. Overwriting the default fallback content type for multipart messages
	23.15. Overwriting the content type for multipart messages
	23.16. Overwriting the default fallback charset for multipart messages

	Chapter 24. YAML Provider
	Chapter 25. String marshalling for String based @*Param
	Chapter 26. Responses using javax.ws.rs.core.Response
	Chapter 27. Exception Handling
	27.1. Exception Mappers
	27.2. Resteasy Built-in Internally-Thrown Exceptions
	27.3. Overriding Resteasy Builtin Exceptions

	Chapter 28. Configuring Individual JAX-RS Resource Beans
	Chapter 29. GZIP Compression/Decompression
	Chapter 30. CORS
	Chapter 31. Content-Range Support
	Chapter 32. Resteasy Caching Features
	32.1. @Cache and @NoCache Annotations
	32.2. Client "Browser" Cache
	32.3. Local Server-Side Response Cache

	Chapter 33. Filters and Interceptors
	33.1. Server Side Filters
	33.2. Client Side Filters
	33.3. Reader and Writer Interceptors
	33.4. Per Resource Method Filters and Interceptors
	33.5. Ordering

	Chapter 34. Asynchronous HTTP Request Processing
	Chapter 35. Asynchronous Job Service
	35.1. Using Async Jobs
	35.2. Oneway: Fire and Forget
	35.3. Setup and Configuration

	Chapter 36. Embedded Containers
	36.1. Undertow
	36.2. Sun JDK HTTP Server
	36.3. TJWS Embeddable Servlet Container
	36.4. Netty

	Chapter 37. Server-side Mock Framework
	Chapter 38. Securing JAX-RS and RESTeasy
	Chapter 39. OAuth 2.0 and Resteasy Skeleton Key
	39.1. System Requirements
	39.2. Generate the Security Domain Key Pair
	39.3. Setting up the Auth Server
	39.3.1. Setting up your Security Domain
	39.3.2. Auth Server Config File
	39.3.3. Set up web.xml
	39.3.4. Set up jboss-web.xml
	39.3.5. Set up jboss-deployment-structure.xml
	39.3.6. Tweak your login page

	39.4. Setting Up An App for SSO
	39.4.1. SSO config file
	39.4.2. Set up web.xml
	39.4.3. Set up jboss-web.xml
	39.4.4. Set up jboss-deployment-structure.xml

	39.5. Bearer Token only Setup
	39.5.1. Bearer token auth config file
	39.5.2. Set up web.xml
	39.5.3. Set up jboss-web.xml
	39.5.4. Set up jboss-deployment-structure.xml

	39.6. Obtaining an access token programmatically.
	39.7. Access remote services securely in a secure web session
	39.8. Check Out the OAuth2 Example!
	39.9. Auth Server Action URLs

	Chapter 40. Authentication
	40.1. OAuth core 1.0a
	40.1.1. Authenticating with OAuth 1.0a
	40.1.2. Accessing protected resources
	40.1.3. Implementing an OAuthProvider

	Chapter 41. JSON Web Signature and Encryption (JOSE-JWT)
	41.1. JSON Web Signature (JWS)
	41.2. JSON Web Encryption (JWE)

	Chapter 42. Doseta Digital Signature Framework
	42.1. Maven settings
	42.2. Signing API
	42.2.1. @Signed annotation

	42.3. Signature Verification API
	42.3.1. Annotation-based verification

	42.4. Managing Keys via a KeyRepository
	42.4.1. Create a KeyStore
	42.4.2. Configure Restreasy to use the KeyRepository
	42.4.3. Using DNS to Discover Public Keys
	42.4.3.1. Configuring DNS TXT Records

	Chapter 43. Body Encryption and Signing via SMIME
	43.1. Maven settings
	43.2. Message Body Encryption
	43.3. Message Body Signing
	43.4. application/pkcs7-signature

	Chapter 44. EJB Integration
	Chapter 45. Spring Integration
	45.1. Basic Integration
	45.2. Spring MVC Integration

	Chapter 46. CDI Integration
	46.1. Using CDI beans as JAX-RS components
	46.2. Default scopes
	46.3. Configuration within JBoss 6 M4 and Higher
	46.4. Configuration with different distributions

	Chapter 47. Seam Integration
	Chapter 48. Guice 3.0 Integration
	48.1. Request Scope
	48.2. Binding JAX-RS utilities
	48.3. Configuring Stage
	48.4. Custom Injector creation

	Chapter 49. Resteasy Client API
	49.1. JAX-RS 2.0 Client API
	49.2. Resteasy Proxy Framework
	1. Abstract Responses
	2. Sharing an interface between client and server

	49.3. Apache HTTP Client 4.x and other backends

	Chapter 50. AJAX Client
	50.1. Generated JavaScript API
	50.1.1. JavaScript API servlet
	50.1.2. JavaScript API usage
	50.1.3. Work with @Form
	50.1.4. MIME types and unmarshalling.
	50.1.5. MIME types and marshalling.

	50.2. Using the JavaScript API to build AJAX queries
	50.2.1. The REST object
	50.2.2. The REST.Request class

	50.3. Caching Features

	Chapter 51. Validation
	51.1. Violation reporting
	51.2. Bean Validation 1.1
	51.3. Bean Validation 1.0
	51.4. Validation Service Providers

	Chapter 52. Maven and RESTEasy
	Chapter 53. JBoss AS 5.x Integration
	Chapter 54. JBoss AS 6/7 Integration
	Chapter 55. Documentation Support
	Chapter 56. Migration from older versions
	56.1. Migrating from 3.0.7 to 3.0.9
	56.2. Migrating from 3.0.6 to 3.0.7
	56.3. Migrating from 3.0 to 3.0.4
	56.4. Migrating from 3.0-beta-6 and 3.0-rc-1
	56.5. Migrating from 3.0-beta-5 and 3.0-beta-6
	56.6. Migrating from 3.0-beta-4 and 3.0-beta-5
	56.7. Migrating from 3.0-beta-2 and 3.0-beta-4
	56.8. Migrating from 3.0-beta-1 and 3.0-beta-2
	56.9. Migrating from 2.x to 3.0-beta-1
	56.10. Migrating from 2.3.2 to 2.3.3
	56.11. Migrating from 2.3.0 to 2.3.1
	56.12. Migrating from 2.2.x to 2.3
	56.13. Migrating from 2.2.0 to 2.2.1
	56.14. Migrating from 2.1.x to 2.2
	56.15. Migrating from 2.0.x to 2.1
	56.16. Migrating from 1.2.x to 2.0
	56.17. Migrating from 1.2.GA to 1.2.1.GA
	56.18. Migrating from 1.1 to 1.2

	Chapter 57. Books You Can Read

