Socket lab

Daniel Hagimont (daniel.hagimont@irit.fr)

The objective of this lab is to practice with Socket programming in Java. You have to implement a load
balancer which receives HTTP requests and forwards them towards a set of web server instances,
following a random policy.

The beginning of the class you have to implement is:

public class LoadBalancer {
static String hosts[] = {"localhost", "localhost"};
static int ports[] = {8081,8082};
static int nbHosts = 2;
static Random rand = new Random();

}
50s Web server 1
Java Comanche 8081
cis Load Balancer sis
Java LB
Client/firefox cos (8080) Web server 2
localhost:8080/page.html Java Comanche 8082

Whenever an HTTP request is received (a new TCP connection), LoadBalancer forwards the request to
one of the web servers (the servers' addresses are given by the hosts and ports tables), and it forwards the
result from the web server back to the client. The choice of the web server is random
(rand.nextInt(nbHosts) returns an integer between 0 and nbHosts-1). For efficiency, LoadBalancer is
multithreaded.

For input/output programming, we will use:
- InputStream
- public int read(byte[] b); // blocking, returns thenumber of read bytes
- OutputStream
- public void write(byte[] b, int off, int len); // write "len" bytes from offset "off"

In this lab, we suppose that requests and responses can be read and written with a single method call
(read() or write()) with a buffer of 1024 bytes. Notice that this assumption is not valid in the real life.

To test your LoadBalancer, you can use a simple web server (Comanche.java).
You can run 2 instances of Comanche from 2 terminals:

java Comanche 8081
java Comanche 8082

I assume that your LoadBalancer accepts connection on port 8080. You can launch your LoadBalancer
from a 3rd terminal.

Then, with a web browser, use the URL: localhost:8080/page.html
(page.html is supposed to be present in the directory from where you ran Comanche)



