
1

Web Services

Daniel Hagimont

https://www.google.fr/search?q=daniel+hagimont+home+page

This lecture is about web services.



2

Motivations

 Motivations
 Coarse-grained application integration
 Unit of integration: the "service" (interface + contract)

 Constraints
 Applications developed independently, without anticipation of 

any integration
 Heterogeneous applications (models, platforms, languages)

 Consequences
 Elementary common basis

• For communication protocols (messages)
• For the description of services (interface)

 Base choice: HTTP and XML/JSON

The example of RPC tool we have seen, Java RMI, is restricted to interactions 
within Java applications, allowing remote invocations of Java objects.
With Web services, the motivation is to provide a RPC facility for the interaction 
(and integration) of coarse-grained applications (that we call services). A service 
is supposed to be much bigger than a simple Java object.  
Web services aim at allowing the interaction between application developed 
independently, with different environments (models, platforms, languages).
Web services rely on elementary existing protocols and formats: mainly HTTP, 
XML and JSON.



3

Basic form of WS : XML-RPC (1998)

<methodCall>
     <methodName>meteo.temperature</methodName>
     <params>
          <param>
               <value><int>31130</int></value>
         </param>
    </params>
</methodCall>

Description in XML of a remote procedure call
Parameter types are specified in an XML schema

Description in XML of parameter retuns

Interest : independence with respect to 
platforms and communication protocols

<methodResponse>
     <params>
          <param>
               <value><int>25</int></value>
          </param>
     </params>
</methodResponse>

https://en.wikipedia.org/wiki/XML-RPC

XML-RPC was a precursor of what are web services now.
XML-RPC was a RPC protocol relying of XML for the representation of requests 
and HTTP for the transport of requests.
The idea was to be independent from execution platforms or languages and to 
rely on widely recognized and adopted formats.
XML-RPC was a precursor and evolved into SOAP, the protocol used in web 
services.



4

SOAP WS : architecture (2000++)

This figure illustrates the architecture of web services (WS).
A service provider may implement a service in any language and/or platform, as 
soon as a runtime for WS exists in his environment. 
The runtime is  a composed of 
- stub and skeleton generators
- a WSDL generator
- a web server (WS runtime) for making services available on the internet
Then, on the server side, the service implementation is linked with the web 
server, in order to be able to receive requests through the HTTP communication 
protocol. A skeleton is generated and is a web application in the web server. A 
WSDL description (Web Service Description Language) of the service is 
generated and published, i.e. made available to potential clients. 
The WS architecture specifies that a service registry (a naming service) should be 
used for the publication and discovery of WSDL descriptions. However, UDDI 
was not actually used. Generally the WSDL of a WS can be published on a Web 
server as any document.
On the client side, the WSDL description can be copied and used to generate a 
stub in the environment of the client. Notice that the environment of the client is 
not mandatorily the same as the one of the server. Then the client can implement 
an application which is able to invoke the WS by calling the stub.
The stub communicates with the skeleton with the SOAP/HTTP protocol which 
is a standard.
HTTP and SOAP are standards from the W3C.
SOAP describes the syntax of request and response messages which are 
transported with HTTP.



5

Elements of SOAP WS

 Description of a service
 WSDL : Web Services Description Language
 Standard notation for the description of a service 

interface
 Access to a service

 SOAP : Simple Object Access Protocol (over HTTP)
 Internet protocol allowing communication between Web 

Services
 Registry of services

 UDDI : Universal Description, Discovery and Integration
 Protocol for registration and discovery of services

Therefore the main elements of WS are :
- the description of the service in WSDL. Generally, from an implementation of a 
service (e.g. a procedure), tools are provided to generate the WSDL description 
of the service, which is published for clients. The clients can used this WSDL 
description to generate stubs so that calls to the service can be programmed 
easily.
- access protocols which are SOAP (for the content of messages) and HTTP (for 
the transport). All the WS runtimes (in any environment) comply with these 
standards.
- registries of service (UDDI) which are not really used.



6

Tools

 From a program, we can generate a WS skeleton
 Example: from a Java program, we generate

• A servlet which receives SOAP/HTTP requests and reproduces the 
invocation on an instance of the class

• A WDSL file which describes the WS interface
 The generated WSDL file can be given to clients
 From WSDL file, we can generate a WS stub

 Example: from a WSDL file, we generate Java classes which can 
be used to invoke the remote service

 Programming is simplified
 Such tools are available in different langage environments

To illustrate this, we give an example of use in the Java environment.
In the Java environment, a WS tool is used to generate from a program (with an 
exported interface) a skeleton as a servlet. A servlet is a Java program which runs 
in a web server. This servlet/skeleton received SOAP/HTTP requests and 
reproduces the invocation on an instance of the class. The WSDL specification of 
the WS is also generated.

The WSDL file is published on the web and imported by the client.

From the WSDL specification, the client can generate stubs which make it easier 
to program WS invocations.

In the following slides, we give an example with Apache Axis.



7

Example: programming a
Web Services

 Eclipse JEE
 Apache Axis
 Creation of a Web Service

 From a Java class
 In the Tomcat runtime
 Generation of the WSDL file

 Creation of a client application
 Generation of stubs from a WSDL file
 Programming of the client

We use Eclipse JEE and Apache Axis which is available in Eclipse JEE.
Apache Axis is used to generate from a Java class a servlet which is installed in 
the Tomcat engine (the web server). It also generates the WSDL description 
which describes the interface of the WS.
On the client side, the WSDL description is used to generate stubs which are used 
to invoke the WS in a client program.



8

Create a Dynamic Web Project

 Eclipse JEE
 Open JEE 

perspective
 Create a 

Dynamic Web 
Project

 Add your 
Tomcat 
runtime

In Eclipse, we create a dynamic web project (a project allowing the develop 
servlets) and add the Tomcat runtime.



9

Create a Class

A Tomcat server 
was created in 
Eclipse

In this project, we create a class.
Notice that a Tomcat server is running in Eclipse.



10

From source file : Web Service → create Web Service

From the source file of the class, we can generate (right click) a WS from this 
file.



11

Copy the generated WSDL file in a new Java project

A servlet was deployed 
on the Tomcat server

Then, we create a new Java project and copy the WSDL description in the new 
project.



12

From the WSDL file
Web Service → Generate Client (Develop Client)

In the new project, from the WSDL file, we generate (right click) the stubs 
(develop Client).



13

Program a client

In the new project, we can program an application which makes an invocation of 
the WS.
The procedure to follow to invoke the WS depends on the tool used (here Apache 
Axis).



14

Run

We can then run the client program which invokes the WS.



15

Generated WSDL
<wsdl:definitions targetNamespace="http://DefaultNamespace" 
xmlns:apachesoap="http://xml.apache.org/xml-soap" xmlns:impl="http://DefaultNamespace" 
xmlns:intf="http://DefaultNamespace" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<!--WSDL created by Apache Axis version: 1.4
Built on Apr 22, 2006 (06:55:48 PDT)-->
 <wsdl:types>
  <schema elementFormDefault="qualified" targetNamespace="http://DefaultNamespace" 
xmlns="http://www.w3.org/2001/XMLSchema">
   <element name="doIt">
    <complexType>
     <sequence>
      <element name="msg" type="xsd:string"/>
     </sequence>
    </complexType>
   </element>
   <element name="doItResponse">
    <complexType/>
   </element>
  </schema>
 </wsdl:types>

We can have a look at the WSDL description. 
We can see that the WSDL syntax is not very simple. Therefore such WSDL 
descriptions are not written by the user, but generally generated by the tool on the 
server side and imported by the client.



16

Generated WSDL

 <wsdl:message name="doItResponse">
      <wsdl:part element="impl:doItResponse" name="parameters">
      </wsdl:part>
   </wsdl:message>
   <wsdl:message name="doItRequest">
      <wsdl:part element="impl:doIt" name="parameters">
      </wsdl:part>
   </wsdl:message>
   <wsdl:portType name="MyService">
      <wsdl:operation name="doIt">
         <wsdl:input message="impl:doItRequest" name="doItRequest">
       </wsdl:input>
         <wsdl:output message="impl:doItResponse" name="doItResponse">
       </wsdl:output>
      </wsdl:operation>
   </wsdl:portType>

Very verbose !



17

Generated WSDL
<wsdl:binding name="MyServiceSoapBinding" type="impl:MyService">
      <wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
      <wsdl:operation name="doIt">
         <wsdlsoap:operation soapAction=""/>
         <wsdl:input name="doItRequest">
            <wsdlsoap:body use="literal"/>
         </wsdl:input>
         <wsdl:output name="doItResponse">
            <wsdlsoap:body use="literal"/>
         </wsdl:output>
      </wsdl:operation>
   </wsdl:binding>
   <wsdl:service name="MyServiceService">
      <wsdl:port binding="impl:MyServiceSoapBinding" name="MyService">
         <wsdlsoap:address location="http://localhost:8080/HW/services/MyService"/>
      </wsdl:port>
   </wsdl:service>
</wsdl:definitions>

Very very verbose !



18

SOAP request(with TCP/IP Monitor)

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

     <soapenv:Body>
          <doIt xmlns="http://DefaultNamespace">
               <msg>hello</msg>
          </doIt>
     </soapenv:Body>

</soapenv:Envelope>

We can have a look at the SOAP request. This is simply a standardized format 
for exchanged messages.



19

SOAP response

<?xml version="1.0" encoding="utf-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

     <soapenv:Body>
           <doItResponse xmlns="http://DefaultNamespace"/> 
     </soapenv:Body>

</soapenv:Envelope>

Here is the SOAP response.



20

REST Web Services (2000++)

 A simplified version, not a standard, rather a style (of use of 
simple features of the web)

 Increasingly popular
 Use of HTTP methods

 GET : get data from the server
 POST : create data in the server
 PUT : update data in the server
 DELETE : delete data in the server

 Invoked service encoded in the URL
 http://<machine>/module/service 
 For instance

• HTTP request to <machine>
• GET /module/service
• service only returns data from the server

SOAP/WSDL based WS were very popular some years ago. They are becoming 
obsolete.
An evolution of WS is REST WS. This is a simplified version which is very 
popular now. Notice that REST WS is not a standard, but rather a 
recommendation or a style of implementation, based on simple features of the 
web.
It relies on HTTP requests (GET, POST, PUT, DELETE), but mainly GET and 
POST are used. GET is used when you want to read (only) data from the WS 
while POST is used when you want to modify something in the WS.
The service that you call is encoded in the URL. 
For instance a GET HTTP request on URL http://<machine>/module/service
This service is supposed to return data from the server, without updating 
anything in the server (its a style, it is not enforced).

 



21

REST Web Services

 Parameter passing
 HTTP parameters

• Format : field1=value1&field2=value2
• GET : parameters in the URL

• http://nom_du_serveur/cgi-bin/script.cgi?champ1=valeur1&...
• POST : parameters are included in the body of the HTTP request

 XML or JSON (or any other)
• Included in the body of the HTTP request 

 Response 
 Included in the body of the HTTP response: XML or JSON (or any other)

 Description of a REST WS (available on the net)
 A simple document describing the methods and parameters
 No WSDL

Parameter passing can be based on HTTP parameters. With HTTP parameters, 
parameters are encoded as a String field1=value1&field2=value2 …
This parameter string is passed in the URL if you use the GET HTTP method, 
and it is passed in the body of the request if you use the POST HTTP method.
You can also pass parameters in a document (XML or JSON or any format) in 
the body of the request.
A service can return a document (XML or JSON) in the body of the response 
(which corresponds to return parameters).

The description of a REST WS is simply a document describing the services that 
you may call and the passed parameters (names, formats). 

 



22

Example of existing REST WS

 www.amdoren.com
 Currency converter

Returned JSON

service

HTTP
parameters

Here is an example of description of a REST WS. This is for a currency 
converter.
It says that you have one service available :

 https://www.amdoren.com/api/currency.php
It lists the parameters that may be passed in the HTTP GET request. A example 
is given.
It then describes the response which is a JSON. A example is given.



23

Development of REST WS

 You can develop your application by hand in any 
programming langage
 Verbose and error prone
 As for RPC, code can be generated

 Many development environments
 e.g. Resteasy and Jersey
 Resteasy in the following of the talk (client and server sides)
 A view on Spring (mainly server side)

Many development environments can be used to REST WS development.
In the following, we overview the used of resteasy (on the server side and the 
client side) and we have a look at Spring. Both will be used in the labs.



24

Existing REST WS (client with resteasy)

 @Path("/")
 public interface ServiceInterface {

     @GET
     @Path("/currency.php")
     @Produces({ "application/json" })
     public Result convert(@QueryParam("api_key") String key, @QueryParam("from") String from, 
                      @QueryParam("to")String to);

 }

public class Result {

     String error;
     String error_message;
     String amount;

     // getters/setters

Interface

Java bean (generated from JSON)

HTTP
parameter

returned
document

invoked
service

With the currency converter, as said in the documentation, the conversion 
method takes 3 HTTP parameters (api_key, from, to, the last is optional) and it 
returns a JSON.
The 3 HTTP parameters are associated with Java parameters (with 
@QueryParam) and a Java bean is created for the JSON.



25

Existing REST WS (client with resteasy)

 public class Client {

     public static void main(String args[]) {
  
         final String path = "https://www.amdoren.com/api"; 

         ResteasyClient client = new ResteasyClientBuilder().build();
         ResteasyWebTarget target = client.target(UriBuilder.fromPath(path));
         ServiceInterface proxy = target.proxy(ServiceInterface.class);

         Result r = proxy.convert("9xwjRjxTtnzuGKH7LcWC5Vengr52F3", "EUR", "AMD");

         System.out.println("convert: "+r.getError()+"/"+r.getError_message()
                                        +"/"+r.getAmount()) ;
     }
 }

Client

easy
invocation

And here is an example of client which invokes the service.



26

Implementing a service with resteasy

 @Path("/")
public class Facade {

    static Hashtable<String, Person> ht = new Hashtable<String, Person>();

    @POST
    @Path("/addperson")
    @Consumes({ "application/json" })
    public String addPerson(Person p) {
         ht.put(p.getId(), p);
         return "person added";
    }

    @GET
    @Path("/getperson")
    @Produces({ "application/json" })
    public Person getPerson(@QueryParam("id") String id) {
         return ht.get(id);
    }

    @GET
    @Path("/listpersons")
    @Produces({ "application/json" })
    public Collection<Person> listPersons() {
         return ht.values();
    }
} Person is a simple POJO

Receives a JSON
Deserialized into a Java object

Returns a String

Returns an object
Serialized into a JSON

Receives an id HTTP parameter

 WS class

As for SOAP/WS, many tools were implemented to help developers.
Here, we present Resteasy (Jersey is also a very popular one you may look at).
On the server side, you can use annotations in a Java program to say :
- each method is associated with a path in the URL used to access the WS
- @Path : specifies the element of the path associated with the class or the 
method. Here method addPerson() is associated with path /addperson
- @POST or @GET : specifies which HTTP method is used. Notice that GET 
returns an object (data) while POST returns an HTTP code (and a message).
- @Consumes : specifies that we receive a JSON object which is deserialized 
into a Java object.
- @Produces : specifies that we return a Java object which is serialized into a 
JSON object.
- @QueryParam : the getPerson() method has an "id" parameter. The 
QueryParam annotation associates this parameter with an "id" HTTP parameter.



27

Implementing a service with resteasy

 Add the RestEasy jars in Tomcat (lib)
 In eclipse (not easy with vscode)

 Create a Dynamic Web Project
 Add RestEasy jars in the buildpath
 Create a package
 Implement the WS classes (Facade + Person)
 Add a class RestApp

public class RestApp extends Application {
private Set<Object> singletons = new HashSet<Object>();
public RestApp() {

singletons.add(new Facade());
}
public Set<Object> getSingletons() {

return singletons;
}

}

To run this example :
- add the Resteasy jars in Tomcat and Eclipse
- create a dynamic web project (a servlet project) 
- add the RestEasy jars in the buildpath of the project
- create a package and the previously developed classes
- add the RestApp class



28

Implementing a service with resteasy

 Add a web.xml descriptor in the WebContent/WEB-INF 
folder

 Export the war in Tomcat

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.jcp.org/xml/ns/javaee" 
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee 
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd" version="3.1">
  <display-name>essai-server</display-name>
  <servlet>
    <servlet-name>resteasy-servlet</servlet-name>
    <servlet-class>
            org.jboss.resteasy.plugins.server.servlet.HttpServletDispatcher
        </servlet-class>
    <init-param>
      <param-name>javax.ws.rs.Application</param-name>
      <param-value>pack.RestApp</param-value>
    </init-param>
  </servlet>
  <servlet-mapping>
    <servlet-name>resteasy-servlet</servlet-name>
    <url-pattern>/*</url-pattern>
  </servlet-mapping>
</web-app>

Add the web.xml descriptor in the WebContent/WEB-INF folder and export a 
war (in the webapps folder of Tomcat)



29

Publish the WS

 Just write a documentation which says that
 The WS is available at http://<machine-name>:8080/<project-name>/
 Method addperson with POST receives a person JSON :

 Method getperson with GET receives an HTTP parameter id and returns 
a person JSON

 Method listperson returns a JSON including a set of persons
 A caller may use any tool (not only RestEasy)

{
  "id":"00000",
  "firstname":"Alain",
  "lastname":"Tchana",
  "phone":"0102030405",
  "email":"alain.tchana@enseeiht.fr"
}

Publication of a REST WS is simply a document describing the interface.



30

Implementing the client with resteasy

@Path("/")
public interface FacadeInterface {

    @POST
    @Path("/addperson")
    @Consumes({ "application/json" })
    public String addPerson(Person p);

    @GET
    @Path("/getperson")
    @Produces({ "application/json" })
    public Person getPerson(@QueryParam("id") String id);

    @GET
    @Path("/listpersons")
    @Produces({ "application/json" })
    public Collection<Person> listPersons();
}

 From the previous documentation, a client can write the 
interface

On the client side, from the documentation, a user can write a Java interface with 
Resteasy annotations. Of course, it's very similar to what we wrote on the server 
side, but we could do it for a WS we don't know (we only have the 
documentation).



31

Implementing the client with resteasy

public class TestClient {

    public static void main(String[] args) {

        final String path = "http://localhost:8080/rest-server"; 

        ResteasyClient client = new ResteasyClientBuilder().build();
        ResteasyWebTarget target = client.target(UriBuilder.fromPath(path));
        FacadeInterface proxy = target.proxy(FacadeInterface.class);

        String resp;
        resp = proxy.addPerson(new Person("007","James Bond"));
        System.out.println(resp);
        resp = proxy.addPerson(new Person("006","Dan Hagi"));
        System.out.println(resp);

        System.out.print("list Person: ");
        Collection<Person> l = proxy.listPersons();
        for (Person p : l) System.out.print("["+p.getId()+"/"+p.getName()+"]");
        System.out.println();
        
        Person p = proxy.getPerson("006");
        System.out.println("get Person: "+p.getId()+"/"+p.getName());
    }
}

 And write a class which invokes the WS

The previous annotated interface (FacadeInterface) makes it easy to invoke the 
service. We can build a proxy object of type FacadeInterface.
This proxy allows programming service invocations simply as method calls.



32

Implementing the client with resteasy

 In eclipse or vscode
 Create a Java Project
 Add RestEasy jars in the project
 Implement the Java bean that correspond to the JSON

• Automatic generation with https://www.site24x7.com/tools/json-to-java.html
 Implement the interface and the client class 

(FacadeInterface + TestClient)
 Run

This is the procedure to run the client. 



33

A view on Spring

 A development environment for server side
 Spring-boot: facilitate the configuration

• Relies on Maven (dependencies)
• Can produce

• A standalone application (including Tomcat)
• A war to be deployed in Tomcat

• Also provides client side support (within a Spring server)
 In VScode

• Extension: Spring initializr java support

Spring is a development environment for developing REST WS.
Spring-boot is an extension which simplifies the configuration. It relies on 
Maven.
Thanks to Spring-boot, you can produce:
- an application which embeds Tomcat. When you launch it, you start a Tomcat 
web server which included your REST WS application.
- a war archive which includes your REST WS application. This war can be 
deployed in a running Tomcat server.
Spring also provides support for invoking an external REST WS from a Spring 
WS.
In VScode, you can use the "Spring initializr" extension which automates the 
creation of a Spring-boot project.



34

Spring initializ : Create a Maven Project
Implement an annotated class

Assuming you have installed in VScode the Spring initializr java support 
extension.
Here, we create the same REST WS as with RestEasy (person management).
You can create a Spring initializr project. 
Initially, there are 2 classes in the project (PersonServerApplication and 
ServletInitializer). You don't have to modify them.
We just implement a class (Facade) which implements the methods of the REST 
WS.
You can annotate these methods with @GetMapping and @PostMapping.
Method parameters can be annotated with @RequestParam (for HTTP 
parameters) of @RequestBody (for a JSON object).
By default, the returned object is serialized into a JSON object.



35

Run as a standalone application
(maven is used to run the app, including Tomcat)

In you VScode project, you have a "mvnw" script. It's a Maven script.
If you run: ./mvnw spring-boot:run
It will start a Tomcat server which executes your REST WS. Thanks to Maven, 
it downloads all the dependencies.
You can test your WS with a web bowser.
Notice that the URL (http://localhost:8080/listpersons) used in the bowser only 
includes the invoked method name.



36

Export a war in Tomcat 

Another way to run your REST WS is to export a war archive that you deploy in 
a Tomcat server (already running).
In your VScode project, you can run: ./mvnw package
It will produce a war in the target folder (person-server-0.0.1-SNAPSHOT.war).
Here, I copy this war into my Tomcat (webapps folder).
I rename it as person-server.war as the name of the war is used in the URL used 
to access the WS.
The URL (http://localhost:8080/person-server/listpersons) used in the bowser  
includes the name of the war.



37

Invoking a rest API from Spring

Spring also provides support for invoking external REST WS from withing a 
Spring WS.
The class to use for that is RestClient.
Here, I programmed a simple Spring REST WS with a method "call". In that 
method, I invoke methods "addperson" and "listpersons" from the previous 
service.



38

Conclusion

 Web Services: a RPC over HTTP, exchanging XML or JSON
 Interesting for heterogeneity as there are tools in all 

environments
 Recently

 SOAP WS less used
 REST + XML/JSON more popular
 Micro-services: used for structuring backend applications

To conclude, Web services aim at implementing a RPC service on top of HTTP 
and relying on standard formats (XML, JSON).
One of the main interest is the independence between the server (the service 
provider) and the client (the service consumer). They can be from different 
organizations and use different tools, OS, or languages.
The recent evolution is an obsolescence of SOAP and an increased popularity of 
REST and JSON.
Recently, the micro-service architecture was proposed. It consists in 
architecturing large applications (especially backend applications) in terms of a 
set of interconnected REST WS (components). The advantage is indenpendence 
between components.


