Web Services

Daniel Hagimont

https://www.google.fr/search? q=daniel+hagimont+home+page

This lecture is about web services.

Motivations

® Motivations

» Coarse-grained application integration

> Unit of integration: the "service" (interface + contract)
" Constraints

> Applications developed independently, without anticipation of
any integration

> Heterogeneous applications (models, platforms, languages)
® Conseguences
> Elementary common basis
* For communication protocols (messages)
* For the description of services (interface)
> Base choice: HTTP and XML/JSON

The example of RPC tool we have seen, Java RMI, is restricted to interactions
within Java applications, allowing remote invocations of Java objects.

With Web services, the motivation is to provide a RPC facility for the interaction
(and integration) of coarse-grained applications (that we call services). A service
is supposed to be much bigger than a simple Java object.

Web services aim at allowing the interaction between application developed
independently, with different environments (models, platforms, languages).

Web services rely on elementary existing protocols and formats: mainly HTTP,
XML and JSON.

Basic form of WS : XML-RPC (1998)

Description in XML of a remote procedure call
Parameter types are specified in an XML schema

<methodCall>
<methodName>meteo.temperature</methodName>
<params>
<param>
<value><int>31130</int></value>
</param>
</params>
</methodCall>

Description in XML of parameter retuns

<methodResponse>
<params>
<param>
<value><int>25</int></value>
</param>
</params>
</methodResponse>

https://en.wikipedia.org/wiki/XML-RPC

XML-RPC was a precursor of what are web services now.

XML-RPC was a RPC protocol relying of XML for the representation of requests

and HTTP for the transport of requests.

The idea was to be independent from execution platforms or languages and to

rely on widely recognized and adopted formats.

XML-RPC was a precursor and evolved into SOAP, the protocol used in web

services.

SOAP WS : architecture (2000++)

Service registry

@
- WSDL =—

Service provider

Client

@ invoke WS runtime __ Service
implementation

Y

SOAP/HTTP

This figure illustrates the architecture of web services (WS).

A service provider may implement a service in any language and/or platform, as
soon as a runtime for WS exists in his environment.

The runtime is a composed of

- stub and skeleton generators

- a WSDL generator

- a web server (WS runtime) for making services available on the internet

Then, on the server side, the service implementation is linked with the web
server, in order to be able to receive requests through the HTTP communication
protocol. A skeleton is generated and is a web application in the web server. A
WSDL description (Web Service Description Language) of the service is
generated and published, i.e. made available to potential clients.

The WS architecture specifies that a service registry (a naming service) should be
used for the publication and discovery of WSDL descriptions. However, UDDI
was not actually used. Generally the WSDL of a WS can be published on a Web
server as any document.

On the client side, the WSDL description can be copied and used to generate a
stub in the environment of the client. Notice that the environment of the client is
not mandatorily the same as the one of the server. Then the client can implement
an application which is able to invoke the WS by calling the stub.

The stub communicates with the skeleton with the SOAP/HTTP protocol which
is a standard.

HTTP and SOAP are standards from the W3C.

SOAP describes the syntax of request and response messages which are
transported with HTTP.

Elements of SOAP WS

" Description of a service
» WSDL : Web Services Description Language
» Standard notation for the description of a service
interface
" Access to a service
» SOAP : Simple Object Access Protocol (over HTTP)
> Internet protocol allowing communication between Web
Services
® Registry of services
» UDDI : Universal Description, Discovery and Integration
> Protocol for registration and discovery of services

Therefore the main elements of WS are :

- the description of the service in WSDL. Generally, from an implementation of a
service (e.g. a procedure), tools are provided to generate the WSDL description
of the service, which is published for clients. The clients can used this WSDL
description to generate stubs so that calls to the service can be programmed
easily.

- access protocols which are SOAP (for the content of messages) and HTTP (for
the transport). All the WS runtimes (in any environment) comply with these
standards.

- registries of service (UDDI) which are not really used.

Tools

®" From a program, we can generate a WS skeleton
» Example: from a Java program, we generate

* A servlet which receives SOAP/HTTP requests and reproduces the
invocation on an instance of the class

* A WDSL file which describes the WS interface
" The generated WSDL file can be given to clients

From WSDL file, we can generate a WS stub

> Example: from a WSDL file, we generate Java classes which can
be used to invoke the remote service

" Programming is simplified
Such tools are available in different langage environments

To illustrate this, we give an example of use in the Java environment.

In the Java environment, a WS tool is used to generate from a program (with an
exported interface) a skeleton as a servlet. A servlet is a Java program which runs
in a web server. This servlet/skeleton received SOAP/HTTP requests and
reproduces the invocation on an instance of the class. The WSDL specification of
the WS is also generated.

The WSDL file is published on the web and imported by the client.

From the WSDL specification, the client can generate stubs which make it easier
to program WS invocations.

In the following slides, we give an example with Apache Axis.

Example: programming a
Web Services

Eclipse JEE

Apache Axis

Creation of a Web Service
> From a Java class

> In the Tomcat runtime
» Generation of the WSDL file

Creation of a client application
> Generation of stubs from a WSDL file
» Programming of the client

We use Eclipse JEE and Apache Axis which is available in Eclipse JEE.

Apache Axis is used to generate from a Java class a servlet which is installed in
the Tomcat engine (the web server). It also generates the WSDL description
which describes the interface of the WS.

On the client side, the WSDL description is used to generate stubs which are used
to invoke the WS in a client program.

Create a Dynamic Web Project

New Dynamic Web Project o o

Dynamic Web Project

Create a standalone Dyhamic Web project or add it to a new or existing Enterprise | @
Application.

Project nagé: | example

Projeet location
Use default location

" Eclipse JEE
" Open JEE

perspective
" Create a

Dynamic Web comior
Project

" Add your
Tomcat ,
ru n ti m e Add project to working sets New...

Target runtime

Apache Tomcat v9.0 New Runtime...

Dynamic web module version

4.0

fation for Apache Tomcat v8.0 ~ || Modify...

God starting point for working with Apache Tomcat v9.0 runtime. Additional facets can
later be installed to add new Functionality to the project.

EARmembership

In Eclipse, we create a dynamic web project (a project allowing the develop
servlets) and add the Tomcat runtime.

Create a Class

eclip: kspace - | le.java - Eclipse IDE

File Edit Source Refactor Navigate Search Project Run Window Help

D vHRIBis PIENs e SR I HY0OvR A iGrET I OS I
PP ¢ =L - O v v Quick Access
%5 Project Explorer 52 = 8 (1] *Example.java 22

E % - é package example;
v & example 3 public class Example {

» ‘s Deployment Descriptor: ex

4
52 public void doIt(String msg) {
b 22 JAX-WS Web Services

6 System.out.println("received call("+msg+")");
~ ¥ Java Resources 7 }
(# src S }
» =\ Libraries o

 # example
b =i Javascript Resources
b = build
P = WebContent
¥ i Servers
P = Tomcat v9.0 Server at local

A Tomca[server [Markers [Properties i Servers 8¢ [Data Source Explorer [Snippets & Console

was created in ___| B%0&m
EClipSe *ﬁaTom:atv9.0Seweratlo:alhost [Stopped]

[0 example.Example.java - example/src

o x
@ e
=
O
&
8

In this project, we create a class.

Notice that a Tomcat server is running in Eclipse.

From source file : Web Service — create Web Service

Web Service o x
Web Services @
select a service implementation or definition and move the sliders to set the level of service and client generation. l!
Web service type: Bottom up Java bean Web Service -
service implementation: = example.Example w || Browse...
e Configuration:
N & (7} Server runtime: Tomcat v9.0 Server
o 0 Web service runtime: Apache Axis (Deprecated)
@ Service project: example
/
-
configuration: No client generation.
L& b=
= 17
Publish the Web service
Monitor the Web service
Do not show me this dialog box again.
@ Ba Next > cancel Finish

10

From the source file of the class, we can generate (right click) a WS from this
file.

Copy the generated WSDL file in a new Java project

r
eclipse-workspace - L le.java - Eclipse IDE - o x
File Edit Source Refactor Navigate Search Project Run Window Help
g~ BivitvyOovAvAviwGvidEIviP A RET Hviiveeyaoy |
Quick Access B &
r
[# Package Explorer & = 0 [3) Example.java 23} = 0 [El Task List 52 = 0
@ . = [backage example; T % e
- & example 3 public class Example { . p
4
v @t 52 public veid doIt(String msg) { Find »oall » A
~ & example 6 System.out.println(“received call("+msg+")"); n G
» B Example java 7
P =\ JRE System Library [jdk1.8.0 g 3
b =\ Apache Tomcat v8.0 [Apache
° e e &= outline 22 = B

» =\ Web App Libraries
= build

¥ (= WebContent
» & META-INF
» = WEB-INF

v (= _
@ Example.wsd|

) S Sem
~ & TestClient
» =\ JRE Syst

b Library [JavaSE-1

@ Example.wsdl

¢ B AW W er

-

~ @ Example
@ dolt(string) : void

[21 Problems @ Javadoc [2 Declaration & Console 2 = o

el

% | B Bl B2 |E|& B~~
Tomeat v9.0 Server at localhost [Apache Tomcat] /home/hagimont/install/jdk1.8.0_202/binfjava (17 nov. 2024 4 18
nov. 1/, 2024 b:22:1/ PR OFQ.apache.axX1s.UTLLS. JaVaUTL(s 1SALTACAMEntSUPportea

AVERTISSEMENT: Unable to find required classes (javax.activation.DataHandler and javax.mail.in
nov. 17, 2024 6:22:17 PM org.apache.coyote.AbstractProtocol start
INFOS: Démarrage du gestionnaire de protocole [“http-nio-8686"]
nov. 17, 2024 6:22:17 PM org.apache.catalina.startup.Catalina start

INFOS: Le démarrage du serveur a pris [353] millisecondes
nov. 17, 2024 6:22:18 PM org.apache.axis.configuration.EngineConfigurationFactoryServiet getSe
GRAVE: Unable to find config file. Creating new servlet engine config file: /WEB-INF/server-¢

smartinsert 1:1:0

A servlet was deployed

writable

Then, we create a new Java project and copy the WSDL description in the new

project.

on the Tomcat server

11

From the WSDL file
Web Service —» Generate Client (Develop Client)

Web Service Client =) &

Web Services =

Select a service definition and move the slider to set the level of client generation. ; 5 |
LI L T Il Tes tClient/Example.wsd ¥ || Browse...

Client type: Java Proxy

Develop dlient

Configuration:
Server runtime: Tomcat v9.0 Server

Web service runtime: Apache Axis (Deprecated)
Client project: TestClient

= - L —
hd e

Menitor the Web service

Do nok show me this dialog box again.

@ < Back Next > Cancel

12

In the new project, from the WSDL file, we generate (right click) the stubs
(develop Client).

Program a client

eclipse-workspace - TestClient/src/example/TestClient.java - Eclipse IDE

File Edit Source Refactor

O @I 9iwi%-0~_~Q~ ¥Ev ®OIviP 4o RE

Navigate Search Project

Run window Help

LR I G CIRCR SR il |

Quick Access B o2&
i PackageExplorer 85 = © | [*TestClientjava 2@1 = 8 | ETasklistx| = &
< & - 1 package example; T % % =
T m e public class TestClient { = 1o
» [Example java
» = JRE System Library [jdk1.8.0 & §= public static void main(String[] args) { Find b Al » Ac
4 mApa(heTor.n(at.vQ.O [Apache ExampleServiceLocator s = new ExampleServicelLocator();
» B\ Web App Libraries Example e;
= build try { &0
e = s.getExample(); . " =
~ (= WebContent c.doTt{"hello"); Outline & a
» = META-INF } catch (Exception el) { a]
) & WEBINF // TODO Auto-generated catch block =| |® RN v
- = wsdl R el.printStackTrace(); -
29 Example.wsdl } # example
b = Servers ¥ ©, TestClient
~ 2 TestClient ! -

» =\ JRE System Library [JavaSE-1
- ®src
~ i example
» [Example.java
» [ExampleProxy.java
» [A Exampleservice java
» [l ExampleServiceLocato
»] ExampleSoapBindingS!
) =i Referenced Libraries
28 Example.wsdl

[Problems @ Javadoc [Declaration & Console &

Tomcat v9.0 Server at localhost [Apache Tomcat] /h

B X % BB ES

ME~>O~

/hagimont/install/jdk1.8.0_202/bin/j

(17 nov. 20243 18

) i
INFOS: Au moins un fichier JAR a été analysé pour trouver des TLDs mais il n'en contenait pas,

nov. 17, 2024 6:30:18 PM org.apache.axis.utils.JavaUtils isAttachmentSupported

AVERTISSEMENT: Unable to find required classes (javax.activation.DataHandler and javax.mail.in
nov. 17, 2024 6:30:18 PM org.apache.coyote.AbstractProtocol start
INFOS: Démarrage du gestionnaire de protocole ["http-nio-8680"]
nov. 17, 2024 6:30:18 PM org.apache.catalina.startup.Catalina start
INFOS: Le démarrage du serveur a pris [368] millisecondes

Writable

SmartInsert 19:1:309

In the new project, we can program an application which makes an invocation of

the WS.

The procedure to follow to invoke the WS depends on the tool used (here Apache

Axis).

13

Run

eclipse-workspace - TestClient/src/example/TestClient.java - Eclipse IDE - o x

File Edit Source Refactor Navigate Search Project Run Window Help
vl @i vy Ay #O~Y ®C Fv! P sERET Hrivoovyay @
Quick Access =R
Package Explorer 5 B8 | [TestClient.java 52 = 5 |[ElTasklistX = B
1 package example; v || e -

3 M 1B
T mRampe 3 public class Testclient { -
» [Example java 4
) =\ JRE System Library [jdk1.8.0 é* public static void main(String[] args) { Find | » All » Ac..
N
8

» =k Apache Tomeat v9.0 [Apache ExampleServicelocator s = new ExampleServicelLocator();

» = Web App Libraries Example e;
 build 9 try {
S — : C poniEens outness = o
:g:i&,ﬂf g ! ca::hTé;;ciﬁg?geﬁé:aged catch block = - B R~
v &= wsdl }g N el.printStackTrace(); <
2 Example.wsdl 16 } # example
b & Servers 17
w 1= Testclient }i i " main(string[]) : vol
} B\ JRE System Library [JavaSE-1
v @ src [0 Problems @ Javadoc [Declaration & Console 52 = O

~ i# example . - -
» [Example java X% KESFSE MEYSY
} [ExampleProxy.java Tomcat v9.0 Server at localhost [Apache Tomcat] /home/hagimont/installfjdk1.8.0_202/bin/java (17 nov. 2024 3 18
& nov. 17, 2024 6:30:18 PM org.apache.axis.utils.JavaUtils isAttachmentSupported

b [ExampleService java AVERTISSEMENT: Unable to find required classes (javax.activation.DataHandler and javax.mail.in
» i) ExampleServiceLocato| nov. 17, 2624 6:30:18 PM org.apache.coyote.AbstractProtocol start
} 1) ExampleSoapBindings! INFOS: Démarrage du gestionnaire de protocole ["http-nio-8e8e"]

. nov. 17, 2024 6 8 PM org.apache.catalina.startup.Catalina start

ov
) I TestClient.java T € q erveur a pris [368] millisecondes
‘ received call(hello)

» =\ Referenced Librari
2 Example.wsdl

14

We can then run the client program which invokes the WS.

Generated WSDL

<wsdl:definitions targetNamespace="http://DefaultNamespace"
xmlns:apachesoap="http://xml.apache.org/xml-soap" xmlns:impl="http://DefaultNamespace"
xmlns:intf="http://DefaultNamespace" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<!--WSDL created by Apache Axis version: 1.4

Built on Apr 22, 2006 (06:55:48 PDT)-->

<wsdl:types>
<schema elementFormDefault="qualified" targetNamespace="http://DefaultNamespace"

xmlns="http://www.w3.0rg/2001/XMLSchema">
<element name="dolt">
<complexType>
<sequence>
<element name="msg" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="doltResponse">
<complexType/>
</element>
</schema>
</wsdl:types>

15

We can have a look at the WSDL description.

We can see that the WSDL syntax is not very simple. Therefore such WSDL
descriptions are not written by the user, but generally generated by the tool on the

server side and imported by the client.

Generated WSDL

<wsdl:message name="dolItResponse">
<wsdl:part element="impl:doItResponse" name="parameters">
</wsdl:part>
</wsdl:message>
<wsdl:message name="dolItRequest">
<wsdl:part element="impl:doIt" name="parameters">
</wsdl:part>
</wsdl:message>
<wsdl:portType name="MyService">
<wsdl:operation name="dolt">
<wsdl:input message="impl:doItRequest" name="doltRequest">
</wsdl:input>
<wsdl:output message="impl:doItResponse" name="doItResponse">
</wsdl:output>
</wsdl:operation>
</wsdl:portType>

16

Very verbose !

Generated WSDL

<wsdl:binding name="MyServiceSoapBinding" type="impl:MyService">
<wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="dolIt">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="doItRequest">
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="doItResponse">
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="MyServiceService">
<wsdl:port binding="impl:MyServiceSoapBinding" name="MyService">
<wsdlsoap:address location="http://localhost:8080/HW/services/MyService"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

17

Very very verbose !

SOAP request(with TCP/IP Monitor)

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<soapenv:Body>
<doIt xmlns="http://DefaultNamespace">
<msg>hello</msg>
</dolt>
</soapenv:Body>

</soapenv:Envelope>

18

We can have a look at the SOAP request. This is simply a standardized format
for exchanged messages.

SOAP response

<?xml version="1.0" encoding="utf-8"?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<soapenv:Body>
<doltResponse xmlns="http://DefaultNamespace"/>

</soapenv:Body>

</soapenv:Envelope>

Here is the SOAP response.

19

REST Web Services (2000++)

" A simplified version, not a standard, rather a style (of use of
simple features of the web)
® Increasingly popular
® Use of HTTP methods
> GET : get data from the server
> POST : create data in the server
» PUT : update data in the server
> DELETE : delete data in the server
" Invoked service encoded in the URL
> http://<machine>/module/service
> For instance
* HTTP request to <machine>

* GET /module/service
» service only returns data from the server

20

SOAP/WSDL based WS were very popular some years ago. They are becoming
obsolete.

An evolution of WS is REST WS. This is a simplified version which is very
popular now. Notice that REST WS is not a standard, but rather a
recommendation or a style of implementation, based on simple features of the
web.

It relies on HTTP requests (GET, POST, PUT, DELETE), but mainly GET and
POST are used. GET is used when you want to read (only) data from the WS
while POST is used when you want to modify something in the WS.

The service that you call is encoded in the URL.
For instance a GET HTTP request on URL http://<machine>/module/service

This service is supposed to return data from the server, without updating
anything in the server (its a style, it is not enforced).

REST Web Services

" Parameter passing
> HTTP parameters
* Format : fieldl=valuel&field2=value2
* GET : parameters in the URL
http://nom_du_serveur/cgi-bin/script.cgi?zchampl=valeurlé&...
* POST : parameters are included in the body of the HTTP request
> XML or JSON (or any other)
* Included in the body of the HTTP request
® Response
> Included in the body of the HTTP response: XML or JSON (or any other)
® Description of a REST WS (available on the net)
> A simple document describing the methods and parameters
> No WSDL

21

Parameter passing can be based on HTTP parameters. With HTTP parameters,
parameters are encoded as a String field1=valuel&field2=value?2 ...

This parameter string is passed in the URL if you use the GET HTTP method,
and it is passed in the body of the request if you use the POST HTTP method.

You can also pass parameters in a document (XML or JSON or any format) in
the body of the request.

A service can return a document (XML or JSON) in the body of the response
(which corresponds to return parameters).

The description of a REST WS is simply a document describing the services that
you may call and the passed parameters (names, formats).

Example of existing REST WS

Currency APl Request

" www.amdoren.com
The base URL for our currency APl is

https:. /. andoren. con/apL/currancy .php " Currency converter

Request Parameters

Parameter Description HTTP
api_key Your assigned API key. This parameter is required.

parameters
from The currency you would like to convert from. This parameter is required.

to The currency you would like to convert to. This parameter is required.

amount The amount to convert from. This parameter is optional. Default is a value of 1.
Example:

To get the latest exchange rate in EUR for 1USD:

https://www.amdoren.com/api/currency.php?api_key=IBZzdLmM2yCYaXjgTZ6x&from=USD&to=EUR

Currency APl Response

Element Description

error Error code. Value greater than zero indicates an error. See list below.

error_message Short decription of the error. See list below.

amount The exchange rate or amount converted.

Example:

JSON data returned from our currency API request: Returned JSON
{ "error" : @, "error_message" : "-", "amount" : 0.90168 }

22

Here is an example of description of a REST WS. This is for a currency
converter.

It says that you have one service available :
https://www.amdoren.com/api/currency.php

It lists the parameters that may be passed in the HTTP GET request. A example
is given.

It then describes the response which is a JSON. A example is given.

Development of REST WS

" You can develop your application by hand in any
programming langage
» Verbose and error prone
> As for RPC, code can be generated
" Many development environments
> e.g. Resteasy and Jersey
» Resteasy in the following of the talk (client and server sides)
> A view on Spring (mainly server side)

23

Many development environments can be used to REST WS development.

In the following, we overview the used of resteasy (on the server side and the
client side) and we have a look at Spring. Both will be used in the labs.

Existing REST WS (client with resteasy)

Interface @
service
returned

document

@ath("/")
public interfac{ [ServicelInterface {

HTTP
parameter

@GET

@Path("/currency.php")

@Produces({ "application/json" })

public Result convert(@QueryParam("api key") String key, @QueryParam("from") String from,
@QueryParam("to")String to);

Java bean (generated from JSON)

public class Result {
String error;
String error_message;
String amount;

// getters/setters

24

With the currency converter, as said in the documentation, the conversion

method takes 3 HTTP parameters (api_key, from, to, the last is optional) and it
returns a JSON.

The 3 HTTP parameters are associated with Java parameters (with
@QueryParam) and a Java bean is created for the JSON.

Existing REST WS (client with resteasy)

Client

public class Client {

public static void main(String args[]) {

final String path = "https://www.amdoren.com/api";

ResteasyClient client = new ResteasyClientBuilder().build();
ResteasyWebTarget target = client.target(UriBuilder.fromPath(path));
Servicelnterface proxy = target.proxy(ServiceInterface.class);

Result r = proxy.convert("9xwjRjxTtnzuGKH7LcWC5Vengr52F3", "EUR", "AMD");

System.out.println(l'convert: "+r.getError()+"/"+r.getError_message()
+"/"+r.getAmount()) ;

easy
invocation

And here is an example of client which invokes the service.

25

Implementing a service with resteasy

® WS class

@Path("/")
public class Facade {

static Hashtable<String, Person> ht = new Hashtable<String, Person>();

@POST Receives a JSON
@Path("/addperson") Deserialized into a Java object
@Consumes ({ "application/json" }) Returns a String

public String addPerson(Person p) {
ht.put(p.getId(), p)
return "person added";

}

GET Returns an object
gPath ("/getperson") Serialized into a JSON

@Produces ({ "application/json" }) Receives an id HTTP parameter ‘
public Person getPerson(@ueryParam("id") String id) {
return ht.get(id);

}

@GET

@Path("/listpersons")

@Produces ({ "application/json" })

public Collection<Person> listPersons() {
return ht.values();

}

i Person is a simple POJO

26

As for SOAP/WS, many tools were implemented to help developers.

Here, we present Resteasy (Jersey is also a very popular one you may look at).
On the server side, you can use annotations in a Java program to say :

- each method is associated with a path in the URL used to access the WS

- @Path : specifies the element of the path associated with the class or the
method. Here method addPerson() is associated with path /addperson

- @POST or @GET : specifies which HTTP method is used. Notice that GET
returns an object (data) while POST returns an HTTP code (and a message).

- @Consumes : specifies that we receive a JSON object which is deserialized
into a Java object.

- @Produces : specifies that we return a Java object which is serialized into a
JSON object.

- @QueryParam : the getPerson() method has an "id" parameter. The
QueryParam annotation associates this parameter with an "id" HTTP parameter.

Implementing a service with resteasy

® Add the RestEasy jars in Tomcat (lib)
" In eclipse (not easy with vscode)
> Create a Dynamic Web Project
> Add RestEasy jars in the buildpath
» Create a package
> Implement the WS classes (Facade + Person)
> Add a class RestApp

public class RestApp extends Application {
private Set<Object> singletons = new HashSet<Object>();
public RestApp() {
singletons.add(new Facade());

public Set<Object> getSingletons() {
return singletons;

}

To run this example :

- add the Resteasy jars in Tomcat and Eclipse

- create a dynamic web project (a servlet project)

- add the RestEasy jars in the buildpath of the project

- create a package and the previously developed classes
- add the RestApp class

27

Implementing a service with resteasy

» Add a web.xml descriptor in the WebContent/WEB-INF
folder

<?xml version="1.0" encoding="UTF-8"7>
<web-app xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd" version="3,1">
<display-name>essai-server</display-name>
<servlet>
<servlet-name>resteasy-servlet</servlet-name>
<servlet-class>
org.jboss.resteasy.plugins.server.servlet.HttpServletDispatcher
</servlet-class>
<init-param>
<param-name>javax.ws.rs.Application</param-name>
<param-value>pack.RestApp</paran-value>
</init-param>
</servlet>
<servlet-mapping>
<servlet-name>resteasy-servlet</servlet-name>
<url-pattern>/*</url-pattern>
</servlet-mapping>
</web-app>

® Export the war in Tomcat
28

Add the web.xml descriptor in the WebContent/ WEB-INF folder and export a
war (in the webapps folder of Tomcat)

Publish the WS

® Just write a documentation which says that
> The WS is available at http://<machine-name>:8080/<project-name>/

> Method addperson with POST receives a person JSON :
{

"id":"00000",

“firstname":"Alain",
"lastname":"Tchana",
"phone":"0102030405",
"email":"alain.tchana@enseeiht.fr"

I

> Method getperson with GET receives an HTTP parameter id and returns
a person JSON
> Method listperson returns a JSON including a set of persons

® A caller may use any tool (not only RestEasy)

29

Publication of a REST WS is simply a document describing the interface.

Implementing the client with resteasy

" From the previous documentation, a client can write the
interface

@Path(*/™)
public interface FacadeInterface {

@POST

@Path("/addperson™)

@Consumes ({ "application/json" })
public String addPerson(Person p);

@GET

@Path("/getperson")

@Produces({ "application/json" })

public Person getPerson(@ueryParam("id") String id);

@GET

@Path("/listpersons")

@Produces({ "application/json" })

public Collection<Person> listPersons();

30

On the client side, from the documentation, a user can write a Java interface with
Resteasy annotations. Of course, it's very similar to what we wrote on the server
side, but we could do it for a WS we don't know (we only have the
documentation).

Implementing the client with resteasy

® And write a class which invokes the WS

public class TestClient {
public static void main(String[] args) {
final String path = "http://localhost:8080/rest-server"

ResteasyClient client = new ResteasyClientBuilder().build();
ResteasyWebTarget target = client.target(UriBuilder.fromPath(path));
FacadeInterface proxy = target.proxy(FacadeInterface.class);

String resp;

resp = proxy.addPerson(new Person("007","James Bond"));
System.out.println(resp);

resp = proxy.addPerson(new Person("006","Dan Hagi"));
System.out.println(resp);

System.out.print("list Person: ");

Collection<Person> 1 = proxy.listPersons();

for (Person p : 1) System.out.print("["+p.getId()+"/"+p.getName()+"]1");
System.out.println();

Person p = proxy.getPerson("006");
System.out.println("get Person: "+p.getId()+"/"+p.getName());

31

The previous annotated interface (Facadelnterface) makes it easy to invoke the
service. We can build a proxy object of type Facadelnterface.

This proxy allows programming service invocations simply as method calls.

Implementing the client with resteasy

" |n eclipse or vscode
» Create a Java Project
> Add RestEasy jars in the project
> Implement the Java bean that correspond to the JSON

* Automatic generation with https://www.site24x7.com/tools/json-to-java.html

> Implement the interface and the client class
(Facadelnterface + TestClient)

> Run

32

This is the procedure to run the client.

A view on Spring

" A development environment for server side
> Spring-boot: facilitate the configuration
* Relies on Maven (dependencies)
e Can produce
A standalone application (including Tomcat)
A war to be deployed in Tomcat
 Also provides client side support (within a Spring server)

> In VScode
* Extension: Spring initializr java support

33

Spring is a development environment for developing REST WS.

Spring-boot is an extension which simplifies the configuration. It relies on
Maven.

Thanks to Spring-boot, you can produce:

- an application which embeds Tomcat. When you launch it, you start a Tomcat
web server which included your REST WS application.

- a war archive which includes your REST WS application. This war can be
deployed in a running Tomcat server.

Spring also provides support for invoking an external REST WS from a Spring
WS.

In VScode, you can use the "Spring initializr" extension which automates the
creation of a Spring-boot project.

Spring initializ : Create a Maven Project
Implement an annotated class

Facade.java - person-server - Visual Studio Code P ® @
File Edit Selection View Go Run Terminal Help
EXPLORER Facadejava X

PERSON-SERVER
OUTLINE

Hashtable<string, Person> ht = ne
ht.put(key:"000",new Person

son p

+p.getId()+"/"+p.getane());

string id
id);

In("Person: "+p.getId()+"/"+p.gethan

¥ > maven
I

Assuming you have installed in VScode the Spring initializr java support
extension.

Here, we create the same REST WS as with RestEasy (person management).
You can create a Spring initializr project.

Initially, there are 2 classes in the project (PersonServerApplication and
ServletInitializer). You don't have to modify them.

We just implement a class (Facade) which implements the methods of the REST
WS.

You can annotate these methods with @GetMapping and @PostMapping.

Method parameters can be annotated with @RequestParam (for HTTP
parameters) of @RequestBody (for a JSON object).

By default, the returned object is serialized into a JSON object.

Run as a standalone application
(maven is used to run the app, including Tomcat)

hagimont@hagimont-pc: ~/shared/cours/enseeiht/cours/intergiciels/tp/tp-ws/essai/person-server Q = - o x

$ 1s

S ./mvnw spring-

® hagimont@hagimont-pc: ~/shared/cours/enseeiht/cours/Intergiciels/tp/tp-ws/essai/person-server Q = = o
che Tomcat/16.1.31]
wahAppucatmn(enté

nitialization compl

http) with conte:

-- main]
pplication in ©.734 seconds (process running for ©.879)

® Applications Raccourcis @ QB @

= localhost:8080/listpersc x | +

&« [&] QO DO localhost

JSON Donnéesbrutes En-tétes

Enregistrer Copier Toutréduire Tout développer T Filtrer le JSON

35

In you VScode project, you have a "mvnw" script. It's a Maven script.
If you run: ./mvnw spring-boot:run

It will start a Tomcat server which executes your REST WS. Thanks to Maven,
it downloads all the dependencies.

You can test your WS with a web bowser.

Notice that the URL (http://localhost:8080/listpersons) used in the bowser only
includes the invoked method name.

Export a war in Tomcat

hagimont@hagimont-pc: ~/shared/cours/enseeiht/cours/Intergiciels/tp/tp-ws/essai/person-server Q = = o x

$ s

mvnw.cmd pom.xml

$. /mvnw packagell

hagimont@hagimont-pc: ~/shared/cours/enseeiht/cours/Intergiciels/tp/tp-ws/essai/person-server/target Q = = o

S cd target/
S 1s

person-server-0.0.1-SNAPSHOT.war .original

s [J

hagimont@hagimont-pc: ~/shared/cours/enseeiht/cours/Intergiciels/tp/tp-ws/essai/person-server/target Q| = = o x

$ cd target/
$ 1s

person-server-0.0.1-SNAPSHOT.war.original

: $ cp person-server-0.0.1-S
NAPSHOT.war ~/install/apache-tomcat-11.6.1/webapps/persen-server.war| |

® Applications Raccourcis eOme

& | @ localhost:8080/person=s X | +
<

(¢} O D localhost

150N

éesbrutes Endtes

36

Another way to run your REST WS is to export a war archive that you deploy in
a Tomcat server (already running).

In your VScode project, you can run: ./mvnw package
It will produce a war in the target folder (person-server-0.0.1-SNAPSHOT.war).
Here, I copy this war into my Tomcat (webapps folder).

I rename it as person-server.war as the name of the war is used in the URL used
to access the WS.

The URL (http://localhost:8080/person-server/listpersons) used in the bowser
includes the name of the war.

Invoking a rest API from Spring

@GetMapping ("

llection<Person>

Hagi")).retrieve().toBo
)

37

Spring also provides support for invoking external REST WS from withing a
Spring WS.
The class to use for that is RestClient.

Here, I programmed a simple Spring REST WS with a method "call". In that
method, I invoke methods "addperson” and "listpersons"” from the previous

service.

Conclusion

® Web Services: a RPC over HTTP, exchanging XML or JSON

® Interesting for heterogeneity as there are tools in all
environments
" Recently
> SOAP WS less used
> REST + XML/JSON more popular
» Micro-services: used for structuring backend applications

38

To conclude, Web services aim at implementing a RPC service on top of HTTP
and relying on standard formats (XML, JSON).

One of the main interest is the independence between the server (the service
provider) and the client (the service consumer). They can be from different
organizations and use different tools, OS, or languages.

The recent evolution is an obsolescence of SOAP and an increased popularity of
REST and JSON.

Recently, the micro-service architecture was proposed. It consists in
architecturing large applications (especially backend applications) in terms of a
set of interconnected REST WS (components). The advantage is indenpendence
between components.

