
1

Message Oriented
Middleware

Daniel Hagimont

https://www.google.fr/search?q=daniel+hagimont+home+page

This lecture is about messaging services that are provided in the context of
Message Oriented Middleware (MOM).

2

Message based model
Introduction

 Client-server model
 Synchronous calls
 Appropriate for tightly coupled components
 Explicit designation of the destination
 Connection 1-1

 Message model
 Asynchronous communication
 Anonymous designation (e.g.: announcement on a

newsgroup)
 Connection 1-N

For the moment, we can consider that the message model consists in
programming distributed applications with simple message exchanges.
The message model has fundamentally different properties compared to the
client-server model.
The client-server model :
- relies on synchronous calls (with a request and a response, the client being
suspended waiting for the response)
- is well suited for tightly coupled components, i.e. the caller depends on the
service provided by the callee
- there's an explicit designation of the callee by the caller
- it's a one to one connection
In opposition, the message model :
- relies on asynchronous communications (the sender does not wait for a
response)
- there can be a anonymous designation (when you send a message to
anybody who may be interested like an announcement on a newsgroup)
- it's can be a one to many connection

3

Message based model
Introduction

 Application example
 Supervision of equipments in a network
 E.g. average load on a set of servers

 Client-server solution
 Periodic invocation

 Message based solution
 Each equipment notifies state changes
 Administrators subscribe notifications

We give here an example of application where the message model is better
suited. Let's consider the supervision of equipments in a cluster (e.g. the load of
the cluster's machines).
A client-server based solution would require a central server performing periodic
invocations of all the servers in the cluster.
A message based solution would see each server notify the central server
whenever the load changes.

4

Message based services
… used everyday

 Electronic forums
(News)
 Pull technologies
 consummers can

subscribe to a forum
 producers can

publish information
in a forum

 consummers can
login and read the
content anytime

 Electronic mail
 Push technologies
 mailing lists (multicast -

publish/subscribe)
 consummers can subscribe a

mailing list
 producers can send emails to

a mailing list
 Consummers receive emails

without having to perform any
specific action

 Asynchronous
 Anonymous
 1-N

Motivations : provide communication facilities for
developing distributed applications, with such features

The message model is already used for many applications in daily use.
For instance, electronic forums (news) are relying on the message model.
Producers publish (send) information on a forum. Consumers subscribe to a
forum and read (pull) the information published on the forums they
subscribed.
Another example is electronic mail with mailing lists. A producer can send
email to a mailing list and consumers can subscribe mailing lists and the
messages sent (push) to these mailing lists are received by those consumers.
In both examples, communication is asynchronous, anonymous and may
involve several receivers.

5

Message based middleware
Principles

 Message Passing (communication with messages)
 Message Queuing (communication with persistent message

queues)
 Publish/Subscribe (communication with subscriptions)
 Events (communication with callbacks)

Message based middleware were designed to provide developers with a
system support for managing messages and programming distributed
applications which exchange messages, with the properties presented
previously (asynchronous, anonymous, 1-N).
In this context, we distinguish 3 kinds of such messaging service :
- Message passing
- Message queuing
- Publish/subscribe
And one additional service commonly found which is event programming.

Message passing is the simplest service which consists in allowing to send
asynchronous messages.
In a classical environment, message passing relies on the socket interface, but
it can have other forms, e.g. in an environment devoted to parallel
applications (PVM and MPI are parallel environments providing message
passing interfaces). Other systems may provides message passing with an
interface different from socket (e.g. ports in Mach).

6

Message based middleware
Message passing

 Communication with message
 In a classical environment: sockets
 In a parallel programming environment: PVM, MPI
 Other environments: ports (e.g. Mach)

7

Message based middleware
Message Queuing
 Queue of messages

 persistent messages (reliability)
 Independence between the emitter and the receiver

 The receiver is not necessarily active
=> increased asynchronism

 Several receivers (anonymous)

send recv

Client Server

Message Queuing is the first advanced service which may be provided by a
MOM.
The basic difference with message passing is that message queuing provides
message persistence.
A queue may be allocated and used by clients (producers) or servers
(consumers). The queue is managed in the network, meaning that it is not
managed in clients neither servers. It is instead managed on machines
managed in the middle, i.e. by the message middleware.
Messages are persistent in the sense that we don't require the producer and the
consumer to be active at the same time for sending a message (which is the
case for message passing). The client may send a message in the queue while
the server is inactive (the machine is down). The message will be read by the
server at a later time, and may be the client will be inactive at that time.
Another aspect of independence is the fact that a queue may be shared by
several producers and consumers. It already provides a sort of anonymous
designation.

8

Message based middleware
Publish/Subscribe

 Anonymous designation
 The receiver subscribes to a topic

• Subject-based
• Content-based

 The producer sends a message to a topic
 Communication 1-N

 Several receivers may subscribe

consommer
publish

producer

subscribe

recv

The second advanced service is the publish/subscribe (pub/sub) service.
A receiver may subscribe to a topic.
There are generally 2 types of pub/sub system:
- subject-based : topics are predefined subjects (i.e. subjects have to be created
by an administrator)
- content-based : topics are filters on the content of messages (e.g. I want to
receive messages which include ….)
A producer sends a message to a topic, i.e. either to a given subject or simply
with a content. All the receivers who subscribed to the subject, or requested a
content which fits with the sent message, will receive a copy of the message.
Here the pub/sub communication service allows message persistence,
anonymous designation and multiple receivers.

9

Message based middleware
Events
 Basic concepts: events, reactions (handling associated with event

reception)
 Attachement: association between an event type and a reaction

 Exists for all forms of messaging (Message Passing, Message
Queuing, Publish/Subscribe)

react

consommer
publish

producer

subscribe

In order not to have to periodically consult message queues (associated with
message queuing or pub/sub) message based middleware often introduces
support for event programming.
It mainly allows the association between an event (reception of a message)
and a reaction (handling program).
Such a facility is available for all forms of communication (message passing,
queuing or pub/sub).

10

Message based middleware
Implementations

Server

client

client client

client

Centralized server
(Hub & spoke)

server server

server server

client

client
client

client

client

Distributed servers
(Snow flake)

server server server

client client client

Software bus

Different implementation strategies may be used.
The simplest one is a centralized server remotely used by all clients. This is
appropriate for testing, but not for real use as it represents a single-point-of-
failure.
Another organization is an interconnection of distributed servers. The
interconnection generally depends on the geographic and administrative
distribution of clients. The server may implement routing of messages according
to the subscriptions from clients.
The last organization is the software bus where all servers know each others.
This is generally a strategy used on local (small scale) networks.

11

Java Message Service
 JMS: Java API defining a uniform interface for

accessing messaging systems
 IBM (WebSphere MQ), Oracle (WebLogic)
 Apache ActiveMQ, RabbitMQ

 Message Queue
 Publish/Subscribe
 Event

With the popularity of MOMs, and the development of Java, was proposed a
common specification of an API for using a MOM from Java. It should be the
same API for all messaging systems (from different providers).
This is JMS for Java Message Service. JMS defines a set of Java interfaces
which allows a client to access a messaging system. JMS tries to minimize
the concepts to learn and manipulate to use a messaging system, while
preserving the diversity of all the existing MOMs.
JMS defines interfaces for managing message Queues and Publish/Subscribe.

12

JMS: an interface
(portability, not Interoperability)

Provider Y

JVM

Client

Client

Client

MQ X MQ YMQ X MQ Y

JMS
ClientProvider X

JVM

Client

JMS

Interoperability : AMQP (Advanced Message Queuing Protocol)

It is important to note that JMS is an interface. Since it is implemented by
many MOM providers, it implies that if you implement your applications
with JMS, it will run on many MOMs (from different providers). So JMS
addressed the issue of the portability of applications.
However, JMS does not bring interoperability. The messages emitted by
provider X may have a different format from those emitted by provider Y.
Portability was brought to MOMs with the standardization of AMQP which
defines format of exchanged data at the network level.

13

JMS interface

 ConnectionFactory: factory to create a connection with a
JMS server

 Connection: an active connection with a JMS server
 Destination: a location (source or destination)
 Session: a single-thread context for emitting or receiving
 MessageProducer: an object for emitting in a session
 MessageConsummer: an object for receiving in a session

 Implementations of these interface are specific to
providers …

JMS may appear complex, but it is rather systematic, and also it had to satisfy all
the providers (if the designers wanted all the providers to implement it).

14

JMS - Architecture

JNDI

ConnectionFactory

Connection

Session

MessageProducer

MessageConsumer

Destination

JMS Client

+

+

This figure illustrates how these interfaces can be used.
JNDI is the interface of a naming service (such as rmiregistry which is an
instance of such a naming service). We assume a JNDI service is available.
A JMS client can obtain from the JNDI service a reference to a
ConnectionFactory, which allows to create a Connection (with the JMS
server) and then to create a session in this JMS server.
The JMS client can also obtain from the JNDI service a reference to a
Destination (an abstract type which can actually refer to a Queue or a Topic).
From a session and a destination, we can create a MessageProducer and a
MessageConsumer allowing to emit and receive messages.

15

Interfaces PTP et P/S

TopicSubscriberQueueReceiverMessageConsumer

TopicPublisherQueueSenderMessageProducer

TopicSessionQueueSessionSession

TopicQueueDestination

TopicConnectionQueueConnectionConnection

TopicConnectionFactoryQueueConnectionFactoryConnectionFactory

Publish/SubscribePoint-To-Point

The interfaces described previously are abstract and are specialized according
to the use of message queuing (Point-To-Point) or Publish/Subscribe

16

Emitter Receiver

ConnectionFactory connectionFactory =
 new ActiveMQConnectionFactory(ActiveMQConnection.DEFAULT_BROKER_URL);
Connection connection = connectionFactory.createConnection();
connection.start();
Session session = connection.createSession(false,Session.AUTO_ACKNOWLEDGE);

Destination destination = session.createQueue("myQueue");
Destination destination = session.createTopic("MyTopic");

Session

Connection

Session

Connection

Queue || Topic

ConnectionFactory
Messaging

JMS - initialization

Here is the code which is common to the emitter and receiver for initializing
the connection with the JMS server and obtaining a destination (one of the 2
lines should be chosen, queue or topic ...).
Notice that with ActiveMQ (this is not JMS standard, but specific to
ActiveMQ), createQueue() and createTopic() take a URL as parameter, so the
same URL used by 2 clients implies the same destination. These ActiveMQ
methods correspond to the query of JNDI.
In ActiveMQ, destinations are instantiated at first use.

17

JMS – producer / consumer

Emitter Receiver

Session

Connection

Session

Connection

+

Producer

MessageProducer producer =
 session.createProducer(destination);

Queue || Topic

ConnectionFactory
Messaging

Consumer

+

MessageConsumer consumer =
 session.createConsumer(destination);

Here, with a session and a destination, we create a producer (left) and a
consumer (right).

18

JMS - communication
Emitter Receiver

Queue || Topic

ConnectionFactory
Messaging

Session

Connection

Session

Connection

+

Producer

+

Consumer

TextMessage msg =
 session.createTextMessage("...");
producer.send(msg);

send

TextMessage m =
 (TextMessage)consumer.receive();

receive

On the left, we can send a message (here a TextMessage) with a producer.
On the right, we can receive a message (here a TextMessage) with a
consumer.

19

JMS - Listener
Emitter Receiver

Queue || Topic

ConnectionFactory
Messaging

Session

Connection

Session

Connection

+

Producer

+

Consumer
Listener

consumer.setMessageListener(listener);

On the consumer side, we can associate a reaction to a message reception
event.

20

JMS - Listener
Emitter Receiver

Queue || Topic

ConnectionFactory
Messaging

Session

Connection

Session

Connection

+

Producer

+

Consumer
Listener

void onMessage(Message msg) throws JMSException {
// unpack and handle the message

}

send

onMessage

The registered listener is an instance of a class which implements the
onMessage() reaction method.

21

JMS – messages
 TextMessage (a character string)

 BytesMessage (bytes array)

String data;
TextMessage message = session.createTextMessage();
message.setText(data);

String data;
data = message.getText();

byte[] data;
BytesMessage message = session.createByteMessage();
message.writeBytes(data);

byte[] data;
int length;
length = message.readBytes(data);

In JMS, messages are types. We can allocate :
- TextMessage (like String)
- BytesMessage (like byte[]).

22

JMS – messages
 MapMessage (sequence of key-value pair)

 A value is a primitive type

MapMessage message = session.createMapMessage();

message.setString("Name", "…");
message.setDouble("Value", doubleValue);
message.setLong("Time", longValue);

String name = message.getString("Name");
double value = message.getDouble("Value");
long time = message.getLong("Time");

23

JMS – messages
 StreamMessage (sequence of values)

 A value is a primitive type
 Reading should respect the sequence order to writing

StreamMessage message = session.createStreamMessage();

message.writeString("…");
message.writeDouble(doubleValue);
message.writeLong(longValue);

String name = message.readString();
double value = message.readDouble();
long time = message.readLong();

24

JMS – messages
 ObjectMessage (serialized objects)

ObjectMessage message = session.createObjectMessage();

message.setObject(obj);

obj = message.getObject();

25

Conclusions
 Communication with messages

 Simple programming model
 Many extensions, variants …

• Message software bus, actors models, multi-agent systems
...

 Widely used for interconnecting tools, existing,
developed independently

 However… it is only apparently simple
 Propagation and report of errors
 Development tools

 Tutorials
 https://www.jmdoudoux.fr/java/dej/chap-jms.htm

Even if the message model may seem to be very simple and primitive, many
extensions and variants exist.
MOMs are widely used for interconnecting tools, integrating tools that were
developed independently.
Notice that simplicity is only apparent, as asynchronism makes it difficult to
debug or to have deterministic behaviors.

