
1

Client-server model

Daniel Hagimont

IRIT/ENSEEIHT
2 rue Charles Camichel - BP 7122

31071 TOULOUSE CEDEX 7

Daniel.Hagimont@enseeiht.fr
http://hagimont.perso.enseeiht.fr

This lecture is about the client server model. It reviews the concepts and
illustrates them with its instanciation in the Java environment, with Remote
Method Invocation (RMI).

2

Client-server model
based on message passing

 Two exchanged messages (at least)
 The first message corresponds to the request. It

includes the parameters of the request.
 The second message corresponds to the response. It

includes the result parameters from the response.

call n_proc (p_in, p_out)

client

Procedure n_proc (p_in, p_out)
begin

end

server

Return(p_out)

Call(p_in)

Client-server interactions can be implemented with message passing (using
sockets).

You then have at least 2 messages exchanged for such an interaction.

The first message corresponds to the request, including parameters, and the
second message corresponds to the response, including result parameters.

The client's execution is suspended after sending of the request, until reception
of the response.

We can observe that such an interaction looks like a procedure call, except that
the caller (client) and the callee (server) are located on different machines.

3

Remote Procedure Call (RPC)
Principles

 Generating most of the code
 Emission and reception of messages
 Detection and re-emission of lost messages

 Objectives: the developer should be able to
program the application without the burden to
deal with messages

We call RPC (Remote Procedure Call) a tool which simplifies the
development of applications relying on such client-server interactions, by
generating the code which implements message exchanges (requests and
responses). The idea is that all this code can be generated from a description
of the interface of the procedure (which can be called on the server from a
remote client).

The objective is to allow the developer to program and test his application as
if it was centralized (executed on one machine) without the burden to deal
with message exchanges. The code enabling the application to be distributed
can be generated and the code of the application is kept simple.

4client server

RPC [Birrel & Nelson 84]
Implementation principle

RPC service
(stub)

appel

network

Caller

Call

RPC service
(stub)

return

Communication
protocol

Communication
protocol Callee

return

A

E

B

D

C

This is the general principle of RPC tools.

In blue, you have 2 code segments, the caller in the client which invokes
(call) a service, and the callee in the server which provides the service.

In a centralized environment, the call would be a simple procedure call
between the caller and the callee.

The principle of a RPC tool is to generate 2 code segments (in brown) called
the client stub (left) and the server stub (right).

The client stub represents the service on the client machine and gives the
illusion that the service is local (can be invoked locally with a simple
procedure call). The client stub implements the same procedure as the server
in order to give this illusion. A call to the procedure in the client stub creates
and sends a request message to the server. The server stub receives and
transforms request messages into local procedure calls on the server machine.

5

RPC (point A)
Implementation principle

 On the caller side
 The client makes a procedural call to the client stub

• The parameters of the procedure are passed to the stub
 At point A

• The stub collects the parameters and assembles a
message including the parameters (parameter
marshalling)

• An identifier is generated for the RPC call and included in
the message

• A watchdog timer is initialized
• Problem: how to obtain the address of the server (a

naming service registers procedures/servers)
• The stub transmits the message to the transport protocol

for emission on the network

On the caller side, the client performs a procedure call (invoking the service) as
if the service was local to the client machine. Notice that the client stub
implements the same procedure as the server, but the implementation of that
procedure is different.

At point A, the client stub is called and receives the parameters from the
procedure call. It assembles a request message which includes these parameters
(this step is called parameter marshalling). An identifier for this RPC call is
generated and included in the request message. This identifier allows to detect
on the server side the reception of 2 requests for the same call (if the message is
supposed to be lost and re-emitted).

A watchdog timer is initialized. It wakes up after a given time. If we don't
receive a response before the wakeup, we consider that the request was lost and
the request is re-emitted.

One problem here is to get the address (IP/port) of the server process for sending
requests. Generally a naming service allows to register available procedures and
their addresses.

The stub can then send the request message with the communication protocol
(generally UDP as the data to be transmitted is not large).

The client is then suspended, waiting for the response message.

6

RPC (points B et C)
Implementation principle

 On the callee side
 The transport protocol delivers the message to the RPC

service (server stub)
 At point B

• The server stub disassembles the parameters (parameter
unmarshalling)

• The RPC identifier is registered
 The call is then transmitted to the remote procedure

which is executed (point C)
 The return from the procedure returns back to the

server stub which receives the result parameters
(point D)

On the callee side, the communication protocol delivers the request message to
the server stub. At point B, the server stub disassembles the parameters of the
call (this step is called parameter unmarshalling). The RPC identifier is
registered to detect redundant requests for the same call.

The call is then reproduced, i.e. the procedure to be called in the callee is
actually called (point C). This is a normal procedure call. On return, the
procedure returns back (point D) to the server stub (with some result
parameters).

7

RPC (point D)
Implementation principle

 On the callee side
 At point D

• The result parameters are assembled in a message
• Another watchdog timer is initialized
• The server stub transmits the message to the transport

protocol for emission on the network

At point D, the server stub assembles the result parameters in a response
message.

Another watchdog timer is initialized. It wakes up after a given time. If we don't
receive an acknowledgment from the client (that the response was received)
before the wakeup, we consider that the response was lost and the response is re-
emitted.

The server stub can then send the response with the communication protocol.

8

RPC (point E)
Implementation principle

 On the caller side
 The transport protocol delivers the response message to

the RPC service (client stub)
 At point E

• The client stub disassembles the result parameters
(parameter unmarshalling)

• The watchdog timer created at point A is disabled
• An acknowledgment message with the RPC identifier is

sent to the server stub (the watchdog timer created at
point D can be disabled)

• The result parameters are transmitted to the caller with a
procedure return

On the caller side, the communication protocol delivers the response message to
the client stub.

At point E, the client stub disassembles the result parameters (parameter
unmarshalling).

The watchdog timer created at point A can be disabled.

An acknowledgment message with the RPC identifier is sent to the server stub
(the watchdog timer created at point D can be disabled).

The result parameters are transmitted to the caller with a procedure return.

9

RPC
Role of stubs

Client stub

 It is the procedure which
interfaces with the client
 Receives the call locally
 Transforms it into a

remote call with a sent
message

 Receives results in a
message

 Returns results with a
normal procedure return

Server stub

 It is the procedure on the
server node
 Receives the call as a

message
 Performs the procedure

call on the server node
 Receives the results of the

call locally
 Transmits the results

remotely as a message

We summarize here the role of the client stub and the server stub.

10

RPC
Message loss

 On the client side
 If the watchdog expires

• Re-emission of the message (with the same RPC identifier)
• Abandon after N attempts

 On the server side
 If the watchdog expires
 Or if we receive a message with a known RPC identifier

• Re-emission of the response message
• Abandon after N attempts

 On the client side
 If we receive a message with a known RPC identifier

• Re-emission of the acknowledgment message

We provide here a global view of the handling of message loss.

On the client side, we created a watchdog before sending the request. If this
watchdog expires, we can suppose that the request was lost and we re-send the
request with the same RPC identifier (we re-initialize the watchdog before
sending). We abandon after N attempts, assuming that the network is down.

On the server side, we create a watchdog before sending the response. As
previously, we re-send the response if the watchdog expires. Another case on the
server side is when we receive a request with a known RPC identifier (requests
are logged). This means that we already received this request and the procedure
was called and the response sent, but the response was lost. Then we re-send the
response. As previously, we abandon after N attempts.

Finally, on the client side, if we receive a response with a known RPC identifier
(response are logged), i.e. a response that we already received, it means that the
acknowledgment sent to the server was lost and we re-send it.

11

RPC
Problems

 Failure handling
 Network or server

congestion
• The response arrives too late

(critical systems)

 The client crashes during
the request handling on
the server

 The server crashes during
the handling of the
request

 Failure of the
communication system

 What guarantees ?

 Security problems
 Client authentication
 Server authentication
 Privacy of exchanges

 Performance
 Designation
 Practical aspects

 Adaptation to
heterogeneity conditions
(protocols, languages,
hardware)

Many other problems can be handled by RPC systems.

The handling of failures covers many types of failure :

- dealing with network or server congestion. Messages may be re-emitted, but
redundant messages must be managed. In a real-time system, the execution
time of a procedure is specified and the procedure should return an error if the
deadline is not respected.

- dealing with the crash of the client or the server during the handling of the
request, or the failure of the communication system. The system should
provide guarantees (e.g. transactional behavior).

A RPC tool may also integrate security features, like authentication and
encryption of exchanges.

Many other aspects were also considered :

- performance of RPC, especially the optimization when the client and server
processes are on the same machine, or on the same LAN.

- designation : different designation scheme can be provided, for identifying
the target (process) of call.

- heterogeneity : a lot of work was done to enable heterogeneity (of
languages, OS …) between the caller and callee (see CORBA).

12

 Use of an interface description language (IDL)
 Specification which is common to the client and the server
 Definition of parameter types et natures (IN, OUT, IN-OUT)

 Use of the IDL description to generate:
 The client stub (also called proxy or stub)
 The server stub (also called skeleton)

RPC
IDL : interface specification

Generally, a RPC tool generates stubs from the specification of the interface
of the procedure which can be called remotely.

An IDL (Interface Description Language) is a simple language for describing
the interface of a procedure which can be called through a RPC system. It
simply allows describing the signature of the procedure, including the type of
the parameters (data structures).

Such a specification allows to generate the client stub (sometimes called
proxy or simply stub) and the server stub (often called skeleton).

13

RPC
Functional mode (rpcgen)

library

Client
program

compiler

Server
procedure

Server
program

compiler

Stub
generator

stub

Common
definitions

skeleton

Stub
generator

Common
definitions library

Interface
description

Client
procedure

rpcgen is one of the first RPC tools which was available in a Unix/C
environment.

From the interface description (expressed with the IDL), a stub generator
generates both the sub and skeleton.

On the client side, the client procedure (caller) is compiled with the stub in
order to obtain an executable binary (client program).

On the server side, the server procedure (callee) is compiled with the skeleton
in order to obtain a executable binary (server program).

These 2 binaries can be installed on different machines and executed.

14

Java Remote Method Invocation
RMI

 An object based RPC integrated within Java
 Interaction between objects located in different

address spaces (Java Virtual Machines - JVM) on
remote machines

 Easy to use: a remote object is invoked as if it
was local

Java RMI (Remote Method Invocation) is an example of implementation of a
RPC tool integrated in a language environment (here Java).

It allows the invocation of methods on instances located on remote machines
(in a remote JVM). Such a remote method invocation is programmed as if the
target object was local to the current JVM.

15

Java RMI
Principle

Method_1

Method_n

state

Server objectClient object

invocation

Communication system

Server
stub

Client
stub

reference

Object reference + method + parameters

Results or exception

designation
sending request
execution of request
sending response

The general principle of Java RMI is illustrated in this figure.

A client object in one JVM (left) includes a reference to a server object
(remote) in another JVM (right).

This reference is actually a reference to a local stub object (client stub). This
stub transforms a method call into a request message (which includes an
object reference to identify the object in the server JVM, an method identifier
and the parameters of the call). This request message is received by a skeleton
object (server stub) which performs the actual method call on the server
object.

16

Java RMI
Server side

Client JVM
Server JVM

ClientClient

SkeletonSkeleton

rmiregistryrmiregistry

ServerServer

NamingNaming

stubstub

stubstub

1

2

3

We describe the general functioning the RMI before describing its
programming model.

We assume that a Server class has been programmed following the RMI
programming model.

On the server side, when the Server class is instantiated, stub and skeleton
objects are instantiated The skeleton object is associated with a local port of
the machine for receiving requests.

In order to make the Server object accessible from clients, it must be
registered in a naming service called rmiregistry (the rmiregistry runs in
another JVM). This registration is possible thanks to the Naming class which
provides a bind method (which registers the association between a name
("foo") and the Server object).

This registration in the rmiregistry makes a copy of the stub in the rmiregistry
 (and registers its association with "foo"). The rmiregistry is ready to deliver
copies of the stub to clients.

17

Java RMI
Server side

 0 – At object creation time, a stub and a skeleton
(with a communication port) are created on the
server

 1 – The server registers its instance with a
naming service (rmiregistry) using the Naming
class (bind method)

 2 – The naming service (rmiregistry) registers the
stub

 3 – The naming service is ready to give the stub
to clients

We recall here the main step of creation of a Server object and registration in the
rmiregistry.

18

Java RMI
Client side

Client JVM
Server JVM

NamingNaming

ClientClient

StubStub
SkeletonSkeleton

rmiregistryrmiregistry

ServerServer

NamingNamingstubstub
4

5

7
7 7

6

On the client side, the client can fetch a reference to the Server object from
the rmiregistry. This is possible thanks to the Naming class which provides a
lookup method (which queries the object registered with a name ("foo")).

The query on the rmiregistry returns a copy of the stub (associated with
"foo"). This stub implements the same interface as the Server object. It can be
used by the client to invoke a method. The stub creates and sends a request
message to the skeleton which performs the actual call on the Server object.

19

Java RMI
Client side

 4 – The client makes a call to the naming service
(rmiregistry) using the Naming class to obtain a
copy of the stub of the server object (lookup
method)

 5 – The naming service delivers a copy of the stub
 6 - The stub is installed in the client and its Java

reference is returned to the client
 7 – The client performs a remote invocation by

calling a method on the stub

We recall here the main step of querying the rmiregistry and performing a
method invocation.

20

Java RMI
Utilization

 Coding
 Writing the server interface
 Writing the server class which implements the interface
 Writing the client which invokes the remote server

object
 Compiling

 Compiling Java sources (javac)
 Generation of stubs et skeletons (rmic)

• (not required anymore, dynamic generation)

 Execution
 Launching the naming service (rmiregistry)
 Launching the server
 Launching the client

Here are the main steps for using RMI.

Regarding coding :

- you must define the Java interface of the Server. This interface is used both
by the Server and the Client.

- the Server class implements the previous interface. The Server is
instantiated and the instance is registered in the rmiregistry.

- the Client can declare a variable whose type is the previous interface. The
Client obtains a copy of the stub from the rmiregistry. The stub implements
the interface. The Client can call a method on this stub.

Regarding compiling :

- the application is compiled with javac as usually

- the stub and skeleton classes can be generated with rmic (a stub generator).
This is not necessary anymore on recent versions of Java, the stubs being
generated dynamically when needed.

Regarding execution :

- you have to launch the rmiregistry

- then you can launch the server and then the client

21

Java RMI
Programming

 Programming a remote interface
 public interface
 interface: extends java.rmi.Remote
 methods: throws java.rmi.RemoteException
 serializable parameters: implements Serializable
 references parameters: implements Remote

 Programming a remote class
 implements the previous interface
 extends java.rmi.server.UnicastRemoteObject
 same rules for methods

Programming RMI applications comes with programming constraints.

For the interface of the Server :

- the interface must be public

- the interface must implement the Remote interface

- all the methods must throw RemoteException

- parameters of remote methods can be of built-in type (int, char), or a Java
reference. In this last case, their type must be an interface which is either
Serializable or Remote (this is detailed later).

For the Server class :

- it must implement the previous interface

- it must extend the UnicastRemoteObject class

- same rules for methods (as in the previous interface)

22

file Hello.java

public interface Hello extends java.rmi.Remote {
 public void sayHello()

throws java.rmi.RemoteException;
}

Java RMI
Example: interface

Description
of the

interface

We review a very simple example.

Here is the definition of the interface.

Interface Hello implements Remote and throws RemoteException.

23

file HelloImpl.java

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class HelloImpl extends UnicastRemoteObject
implements Hello {

 String message;

 // Constructor implementation
 public HelloImpl(String msg) throws java.rmi.RemoteException {
 message = msg;
 }
 // Implementation of the remote method
 public void sayHello() throws java.rmi.RemoteException {

System.out.println(message);
 }

…

Java RMI
Example: server

Implementation
of the

server class

Here is the code of the server class.

Class HelloImpl extends UnicastRemoteObject and implements interface
Hello.

Your constructors must throw RemoteException.

The remote method sayHello() throws RemoteException.

24

file HelloImpl.java

…

 public static void main(String args[]) {
try {

// Create an instance of the server object
Hello obj = new HelloImpl("hello");
// Register the object with the naming service
Naming.rebind("//my_machine/my_server", obj);
System.out.println("HelloImpl " + " bound in registry");

} catch (Exception exc) {… }
 }
}

Java RMI
Example: server

NOTICE : in this example, the naming service (rmiregistry)
must have been launched before execution of the server

Implementation
of the

server class

The rest of the code of the server.

The main method creates an instance of the server class (HelloImpl) and
registers it in the rmiregistry, thanks to the Naming class.

The URL passed in the rebind() method is //<machine-name>:<port>/<name>

- machine-name is the name of the machine which runs the rmiregistry

- port is the port used by the rmiregistry (the default port is 1099)

- name is the name identifying the registered object in the rmiregistry

In its implementation in Java, the rmiregistry has to be colocated (on the same
machine) with the JVM which runs the server object. A work around is to
implement another rmiregistry (allowing remote registrations).

Notice that after the registration, this is the end of the main method and the
JVM would exit. This is not the case, since when we instantiated the server
object, a skeleton was instantiated with creation of a communication socket
and of a thread waiting for incoming requests. Because of that thread, the
JVM does not exit.

Here, we assume that the rmiregistry was launched (rmiregistry is an
executable) on the same machine as the server object, with the command :

rmiregistry <port> (default is 1099)

25

file HelloImpl.java
 public static void main(String args[]) {
 int port; String URL;

 try {
 Integer I = new Integer(args[0]); port = I.intValue();
 } catch (Exception ex) {
 System.out.println(" Please enter: java HelloImpl <port>"); return;
 }

 try {
 // Launching the naming service – rmiregistry – within the JVM
 Registry registry = LocateRegistry.createRegistry(port);

 // Create an instance of the server object
 Hello obj = new HelloImpl();

 // compute the URL of the server
 URL = "//"+InetAddress.getLocalHost().getHostName()+":"+

port+"/my_server";
 Naming.rebind(URL, obj);
 } catch (Exception exc) { ...}
}

Java RMI
running the rmiregistry within the server JVM

In this other version, we launch a rmiregistry in the same JVM as the one
hosting the server object.

The createRegistry method launches a rmiregistry within the local JVM on
the specified port.

The interest of doing so is that when you start the application, a rmiregistry is
automatically launched and when you kill the JVM, the rmiregistry is also
killed. This is very convenient when debugging.

26

file HelloClient.java

import java.rmi.*;

public class HelloClient {
 public static void main(String args[]) {
 try {
 // get the stub of the server object from the rmiregistry
 Hello obj = (Hello) Naming.lookup("//my_machine/my_server");
 // Invocation of a method on the remote object
 obj.sayHello();
 } catch (Exception exc) { … }
 }
}

Java RMI
Example: client

Implementation
of the

client class

Here is the code on the client side.

It first requests a reference to the target object from the rmiregistry, using the
lookup method from the Naming class (the used URL is the same as before.

Notice that here the client can be executing on a different machine.

The rmiregistry returns a stub instance. This stub instance implements the
same interface as the server object (here Hello). So we can cast the obtained
reference with the Hello interface.

Then, invoking a method on the remote object is programmed as if the object
was local.

27

Java RMI
Principle of remote method invocation

Java VM Java VM

Client
ref_obj1.m()

Stub
obj1

Skeleton
obj1

obj1
m()

To summarize the functioning of Java RMI, a client which obtained (from the
rmiregistry) a remote reference (ref_obj1) to a remote object (obj1) has
actually a reference to a local stub object (Stub obj1). The client can invoke a
method m() on the remote object. It will invoke this method on the stub,
which will send the request message. This message is received by the
skeleton (Skeleton obj1) which performs the actual invocation on the server
object.

28

Java RMI
Serializable object parameter passing

Java VM Java VM

Client
ref_obj1.m(ref_O2)

Stub
obj1

Skeleton
obj1

obj1
m(ref_clone_O2)

O2

clone_O2

Parameters passed in a remote method can be of built-in types (int char …).
Then the parameters are simply copied (transferred) in the remote server.

If a parameter is a Java reference to an object, the type of the parameter in the
method signature must be an interface. Then, there are 2 possibilities:

- Serializable. If the interface is serializable (inherits from Serializable), then
the passed object is copied to the server (the object is cloned).

- Remote. If the interface is Remote (inherits from Remote), then the remote
reference (i.e. the stub) is passed to the server, meaning that the stub is copied
in the server. Therefore, the passed object becomes accessible remotely in the
server.

- if the interface is neither Serializable nor Remote, this is an error (it should
not compile).

This figure illustrates the Serializable case. The client passes as parameter a
reference to object O2 which is local in the client. Then, O2 is copied to the
server and the invoked method (m) receives a reference to a clone of object
O2 in the server.

29

Java RMI
Remote object parameter passing

Java VM Java VM

Client
ref_obj1.m(ref_O2)

Stub
obj1

Skeleton
obj1

obj1
m(ref_O2)

Stub
O2

O2

Stub
O2

This figure illustrates the Remote case. The client passes as parameter a
reference to object O2 which is remote (in another JVM). It means that the
reference to O2 in the client is a local reference to a sub of O2. Then, the stub
of O2 is copied to the invoked server and the invoked method (m) receives a
reference to a copy of stub of O2 in the server. Therefore, m() receives a
remote reference to O2.

30

Java RMI
Compiling

 Compiling the interface, the server and the client
 javac Hello.java HelloImpl.java HelloClient.java

 Generation of stubs (not needed anymore)
 rmic HelloImpl

• skeleton in HelloImpl_Skel.class
• stub in HelloImpl_Stub.class

To execute the application, you must first compile the interface and the server
and client classes.

As previously mentioned, generating stubs and skeletons is not necessary
anymore, but you can still do it.

31

Java RMI
Deployment

 Launching the naming service
 rmiregistry &

 launching the server
 java HelloImpl
 java -Djava.rmi.server.codebase=http://my_machine/…

• URL of a web server from which the client JVM will be able
to download missing classes

• Example: serialization

 Launching the client
 java HelloClient

Here we explicitly launch the rmiregistry in a shell.

Then, we can launch the server and then the client.

One tricky issue is the availability of classes. Assume the client invokes a
method m(Data d) on the server, Data being an interface which is Serializable.
Both the client and the server know the interface Data (it was necessary to use
the method m and to compile the code). Then the client may invoke m passing
an instance of class ClientData (which implements Data). But the server which
receives a copy of the object does not have the ClientData class (and different
clients may have different implementations of the Data interface).

More generally, a JVM may transfer copies of objects (with Serialization) to
other JVMs. How can the first JVM make these classes available to other JVMs.
The solution is to specify, when launching a JVM, a web site from which classes
can be downloaded. When classes are missing for using a serialized object, the
classes are downloaded and installed dynamically.

java -Djava.rmi.server.codebase =URL <a class>

When launching a JVM this way, we specify that if serialized instances are given
to other JVMs, the missing classes can be found on the web site defined by
URL.

32

Java RMI: conclusion

 Very good example of RPC
 Easy to use
 Well integrated within Java
 Java reference parameter passing: serialization or

remote reference
 Deployment: dynamic loading of serializable classes
 Designation with URL

Many tutorials about RMI programming on the Web …
Example : https://www.javatpoint.com/RMI

To conclude this lecture, Java RMI is a very example of RPC integrated in a
Java.

Many tutorials about Java RMI can be found on the net.

