
1

1

Sockets

Daniel Hagimont

IRIT/ENSEEIHT
2 rue Charles Camichel - BP 7122

31071 TOULOUSE CEDEX 7

Daniel.Hagimont@enseeiht.fr
http://hagimont.perso.enseeiht.fr

The first part of this lecture is devoted to sockets.

2

2

What are sockets

 Interface for programming network
communication

 Allow building client/server applications
 Applications where a client program can make

invocations to server programs with messages
(requests) rather than shared data (memory or files)

 Example: a web browser and a web server

 Not only client/server applications
 Example: a streaming applications (VOD)

Sockets are a programming interface (API) for implementing message exchanges
between processes which may run on different machines.

Such message exchanges are often used to implement distributed applications
following the client-server model.

In this model, a server is a program running one machine, which provides a
service to some client programs running on other machines. A client may invoke
this sevice by sending a message (called request) to the server program. Upon
reception of a request, the server executes the treatments which correspond to the
service, then it sends a message (called response) back to the client. The client is
suspended after the emission of the request until reception of the response.

Notice that the request/response may include parameters/results.

A very popular exmple is the communication between a web browser (client) and
a web server (server).

However, message exchanges can be used to implement other types of
application, e.g. streaming applications like Video On Demand.

3

3

Two modes
connected/not connected

 Connected mode (TCP)
 Communication problems are handled automatically
 Simple primitives for emission and reception
 Costly connection management procedure
 Stream of bytes: no message limits

 Not connected mode (UDP)
 Light weight: less resource consumption
 More efficient
 Allow broadcast/multicast
 All communication problems (packet loss) have to be

handled by the application

Communication between processes can be performed following 2 modes :

- the connected mode corresponds to the use of the TCP communication
protocol. We can create a connection between the client process and the server
process. The connection is bi-directional (both the client and the server can
send data on the connection). The communication mode is a stream of byte, i.e.
there's no message limit. Communication problems (reemission of lost packets,
blocking in case of buffer saturation) are automatically handled by TCP. The
establishment of the connection is costly.

- the non connected mode corresponds to the use of the UDP communication
protocol. There's no connection establishment anymore, nor handling of
communication problems. It reduces resource consumption. A message of any
size can be sent (it is split into IP packets, and reassembled on reception).
There's no guarantee regarding message reception (it has to be handled by the
application). Notice that UDP allows sending messages in multicast or
broadcast (in general on a local network).

4

4

Sockets

 Network access interface
 Developed in Unix BSD
 @IP, #port, protocol (TCP, UDP, ...)

Sockets were initially developed in Unix BSD (Berkeley Software
Distribution). They provide access to the network.

At the bottom layer (data link), machines (or rather network cards) are
identified by a MAC address (e.g. an Ethernet address).

At the middle level (network), machines are identified by an IP address. ARP
is the protocol which allows translating an IP address into a MAC address on a
local network.

At the top level (transport), a process on one machine is identified by a couple
@IP / #port, e.g. a web server is accessible on port 80 (default port) on a
machine.

5

5

The socket API

 Socket creation: socket(family, type, protocol)

 Opening the dialog:
 Client: bind(..), connect(...)
 Server: bind(..), listen(...), accept(...)

 Data transfer:
 Connected mode: read(...), write(...), send(...), recv(...)
 Non-connected mode: sendto(...), recvfrom(...),

sendmsg(...), recvmsg(...)

 Closing the dialog:
 close(...), shutdown(...)

The socket API includes a set of functions in a programming language (initially
C) for managing communication between processes.

A socket is a file descriptor, similar to the file descriptors used to access files,
except that writing or reading on such a descriptor sends or receives data to/from
a remote process.

The socket API includes function for :

- creating a socket

- opening the dialog, i.e. initializing the socket (in connected or non-connected
mode)

- transfering data (in connected or non-connected mode)

- closing the dialog

6

6

Client/Server in non-connected mode

We describe the schema of a request/response interaction between a client and
a server. Here we consider its implementation with non connected sockets
(UDP).

- both the client and the server create a socket with the socket() function which
returns a file descriptor (fd, an index in the file descriptor table of the process).
This fd is a parameter of all the following function calls.

- both the client and server call the bind() function which associates the socket
with a local port of the machine (given as parameter). This port is the port used
to receive messages (by the client or the server).

Generally, on the server side, this port in known in advance and given as
parameter to bind(). The client knows this server port and communicates with
the server identified with the IP address of the server and this server port. If the
port is already used, bind() returns an error.

Generally, on the client side, the port given to bind() is 0, which means that
bind() has to allocate a free port. This port is only used to receive responses.

- the client can call the sendto() function to send a message, giving as
parameter the IP address and port of the target server process.

- the server can call the recvfrom() function to wait for a message. This
function blocks until reception of a message. Upon reception, the message
(request) is handled.

- the server can send a response with sendto(). The IP address and port of the
client process (which sent the request) can be found in the request message.

- the client waits for the response using the recvfrom() function. Upon
reception, the client can handle the response.

7

7

Client/Server in connected mode

Here we consider a request/response interaction with connected sockets (TCP).

- both the client and the server create a socket with the socket() function which
returns a file descriptor (fd). This fd is a parameter of all the following function calls.

- on the server side

 - bind() allows to associate the socket with a local port.

 This port is generally known (e.g. port 80 for a web server)

 - listen() allows to specify that the socket will be used to receive

 connection requests and how many connection requests can be pending

 - accept() blocks until reception of a connection request from a client.

 Upon reception of a connection request, accept() returns a new socket

 (a new fd) which is used by the server to send/receive on the

 established connection.

- on the client side

 - connect() allows to send a connection request to the server,

 giving as parameter the IP address and port of the target server process.

 connect() includes a call to bind() (this is hidden).

 After returning from connect(), the connection is established and

 the socket is used to send/receive.

What is important is the difference between the client and the server.

The client creates a socket, calls connect() and then use the socket to send/receive
messages on that connection.

The server creates a socket, calls bind() and accept() and obtains a NEW socket for
that connection with the client. The server may accept other connections with other
clients and will obtain a different socket for each connection/client.

On a TCP connection, data may be sent/received with write/read functions on
sockets (the same functions used to write/read data to/from a file).

8

8

socket() function

 int socket(int family, int type, int protocol)
 family

 AF_INET: for Internet communications
 AF_UNIX: for local communications

 type or mode
 SOCK_STREAM: connected mode (TCP)
 SOCK_DGRAM: non-connected mode (UDP)
 SOCK_RAW: direct access to low layers (IP)

 protocol :
 Protocol to use (different implementations can be installed)
 0 by default (standard)

We review the socket API in C.

socket() is the function which allows creating a socket.

AF_UNIX is used for local (to a machine) communications, while AF_INET
is used for remote communications.

The type should be SOCK_STREAM for connected communication (TCP)
and SOCK_DGRAM for non connected communication (UDP). Sockets can
also be used in RAW mode (direct access to the IP level).

The protocol to be used should be 0 for default protocols (TCP, UDP), but
could be different if other protocols are installed.

Notice that socket() returns an integer which is a file descriptor.

9

9

After call to socket()

sock_client FD table

Client Server

sock_server

This is a representation of the states of the client and server processes after a call
to socket() on both sides.

On both sides, an entry in the file descriptor table was allocated for the socket.

10

10

bind() function

 int bind(int sock_desc, struct sockaddr *my_@, int lg_@)

 sock_desc: socket descriptor returned by socket()

 my_@: IP address and # port (local) that should be used

 Example (client or server):

int sd;

struct sockaddr_in my_address; // @IP, #port, mode

sd = socket(AF_INET, SOCK_STREAM, 0);

 my_address.sin_family = AF_INET;

 my_address.sin_port = 0; // let system choose a port

 my_address.sin_addr.s_addr = INADDR_ANY;
 // any network interface

 bind(sd, (struct sockaddr *)&my_address, sizeof(my_address));

The bind() function is invoked on both sides. It creates the association between a
socket and a local port.

- sock_desc is the fd of the socket

- my_@ is a structure which describes initializations of the socket

 - sin_port = 0 means that bind() should allocate a free port

 - s_addr = INADDR_ANY means bind() can use any network interface

 (in case there are several network interfaces (cards))

- lg_@ is the size of the previous structure as it may differ depending on the OS

11

11

After call to bind()

FD table

Client Server

sock_client # sock_server

We can already exchange messages in non-connected mode

This is a representation of the states of the client and server processes after a call
to bind() on both sides.

On both sides, an socket in the file descriptor table is bound to a local port.

12

12

connect() function

 int connect(int sock_desc, struct sockaddr * @_server, int lg_@)

 sock_desc: socket descriptor returned by socket()

 @_server: IP address and # port of the remote server

 Example of client:

int sd;

struct sockaddr_in server; // @IP, #port, mode

struct hostent remote_host; // name et @IP

sd = socket(AF_INET, SOCK_STREAM, 0);

server.sin_family = AF_INET;

server.sin_port = htons(80);

remote_host = gethostbyname(“www.enseeiht.fr”); // DNS loookup

bcopy(remote_host->h_addr, (char *)&server.sin_addr,

 remote_host->hlength); // copy the address
connect(sd, (struct sockaddr *)&server, sizeof(server));

The connect() function is invoked on the client side. It sends a connection request
to a remote server.

 - sock_desc is the fd of the socket

- @_server is a structure which describes the remote server (@IP and port)

 - sin_port = the remote server port.

 htons (host to network) is a function which converts the port number (13)

 from a host representation to a network representation. This comes from

 the fact that an integer may have different representations on different

 hardware (little indian, big indian)

 - sin_addr = the @IP of the remote server

 gethostbyname() allows to obtain from DNS the IP from the machine name

 The IP address is a structure which has to be copied into the sin_addr structure.

- lg_@ is the size of the previous structure as it may differ depending on the OS

13

13

After call to connect()

FD table

Client Server

sock_client # sock_server

connection
request

This is a representation of the states of the client and server processes after a call
to connect() on the client side.

A connection request has been sent from the client to the server.

14

14

listen() function

 int listen(int sock_desc, int nbr)

 sock_desc: socket descriptor returned by socket()

 nbr: maximum number of pending connections

 Example of server:

int sd;

struct sockaddr_in server; // @IP, #port, mode

sd = socket(AF_INET, SOCK_STREAM, 0);

server.sin_family = AF_INET;

 server.sin_port = 0; // let system choose a port

server.sin_addr.s_addr = INADDR_ANY;

 // any network interface
bind(sd, (struct sockaddr *)&server, sizeof(server));
listen(sd, 5);

The listen() function is invoked on the server side to say that the socket will
be used to receive connection requests and how many connection requests
can be pending.

- sock_desc is the fd of the socket

- nbr is the number of tolerated pending connection requests (in a waiting
queue). If the waiting queue is full, the connection from the client is rejected.

15

15

accept() function

 int accept(int sock_desc, struct sockaddr *client, int lg_@)

 sock_desc: socket descriptor receiving connection requests

 client: identity of the client which requested the connection

 accept returns the socket descriptor associated with the accepted
connection

The accept() function is invoked on the server side. It blocks waiting for
incoming connection requests. When a connection request is received, the
blocked process is resumed and the function returns a new socket : the socket
used to communicate with the client through the connection.

- sock_desc is the fd of the socket used to receive connection requests

- client is a structure which is updated with the identity (@IP, port) of the client
who requested the connection.

16

16

After call to accept()

FD table

Client Server

sock_client # sock_server

sock_connection

This is a representation of the states of the client and server processes after a
connection has been accepted by the server.

In the server, a new socket (#sock_connection) was allocated and allows the
server to communicate with the client through the connection.

17

17

Message emission/reception functions

• int write(int sock_desc, char *buff, int lg_buff);

• int read(int sock_desc, char *buff, int lg_buff);

• int send(int sock_desc, char *buff, int lg_buff, int flag);

• int recv(int sock_desc, char *buff, int lg_buff, int flag);

• int sendto(int sock_desc, char *buff, int lg_buff, int flag,
struct sockaddr *to, int lg_to);

• int recvfrom(int sock_desc, char *buff, int lg_buff, int flag,
struct sockaddr *from, int lg_from);

• flag : options to control transmission parameters
(consult man)

Many functions are available for sending and receiving messages (the list here
is not exhaustive).

The first four only take a socket and buffer as parameters, so they are used for
the connection mode.

The last two take a sockaddr structure, allowing to specify the address (IP and
port) we are sending to or to know the address of the sender we are receiving
from. So they are used for the non connected mode.

Many functions have flags for controlling their behavior.

18

18

Communication

FD table

Client Server

sock_client # sock_server

sock_connection

write
read

read
write

This figure illustrates communication on a TCP connection.

Both the client and the server can use read/write functions on the sockets
associated with the connection. The connection is bi-directional.

19

19

A concurrent server

 After fork() the child inherits the father’s descriptors
 Example of server:

int sd, nsd;

...

sd = socket(AF_INET, SOCK_STREAM, 0);

...
bind(sd, (struct sockaddr *)&server, sizeof(server));
listen(sd, 5);
while (!end) {

nsd = accept(sd, ...);
if (fork() == 0) {

close(sd); // the child doesn’t need the father’s socket

 /* here we handle the connection with the client */

close(nsd); // close the connection with the client
exit(0); // death of the child

}
close(nsd); // the father doesn’t need the socket of the connction

}

This is a typical example of concurrent server. The server is concurrent as a
child process is created for each accepted connection.

The server creates a socket, binds it to a local port, and calls listen().

It then loops and waits for incoming connections (accept()). For each received
connection, accept() returns a new socket (nsd). For this new connection, the
server creates a process (fork()). The child process handles data received on
this connection. The father process loops and waits for another connection.

20

20

Programming Socket in Java

 package java.net
 InetAddress
 Socket
 ServerSocket
 DatagramSocket / DatagramPacket

We now study the socket API in the Java environment.

Sockets in Java are provided by the java.net package.

The main classes are :

- InetAddress

- Socket and ServerSocket for TCP

- DatagramSocket and DatagramPacket for UDP

21

21

Using InetAddress (1)

import java.net.*;
public class Enseeiht1 {

 public static void main (String[] args) {
 try {
 InetAddress address =
 InetAddress.getByName("www.enseeiht.fr");
 System.out.println(address);
 } catch (UnknownHostException e) {
 System.out.println("cannot find www.enseeiht.fr");
 }
 }
}

InetAddress allows invoking the DNS, translating with getByName() a machine
name into an IP address. It returns an InetAddress instance which includes the IP
address.

22

22

Using InetAddress (2)

import java.net.*;
public class Enseeiht2 {

 public static void main (String[] args) {
 try {
 InetAddress a = InetAddress.getLocalHost();
 System.out.println(a.getHostName() + " / " +
 a.getHostAddress());
 } catch (UnknownHostException e) {
 System.out.println("No access to my address");
 }
 }
}

InetAddress also allows to obtain the InetAddress of the local host. The returned
InetAddress instance includes the machine name and its IP address.

23

23

Client socket and TCP connexion

try {

Socket s = new Socket("www.enseeiht.fr",80);
 …
} catch (UnknownHostException u) {

System.out.println("Unknown host");
} catch (IOException e) {

System.out.println("IO exception");
}

With TCP, a client can create a TCP connection with a target server (here
www.enseeiht.fr), by creating an instance of the Socket class.

This operation corresponds to the calls in C of :

- socket()

- connect()

24

24

Reading/writing on a TCP connection

try {

Socket s = new Socket ("www.enseeiht.fr",80);

InputStream is = s.getInputStream();

…

OutputStream os = s.getOutputStream();

…
} catch (Exception e) {

System.err.println(e);
}

From this socket instance which is connected with the server, we can obtain 2
objects :

- an InputStream object which allows to read bytes

- an OutputStream object which allows to write bytes

With these objects, the client can send or receive data.

25

25

Server socket TCP connection

try {

ServerSocket server = new ServerSocket(port);

Socket s = server.accept();

OutputStream os = s.getOutputStream();

InputStream is = s.getIntputStream();

…
} catch (IOException e) {

System.err.println(e);
}

On the server side, the server can create a ServerSocket instance, giving a local
port number as parameter. A ServerSocket instance is a socket for receiving
connections. Therefore, this instanciation corresponds to the calls in C of :

- socket()

- bind()

- listen()

Then, the call of accept() on this instance blocks waiting for incoming
connections. The process is resumed on connection reception, and accept()
returns a Socket instance, which is the communication socket of the connection
with the client. Like for the client side, we can obtain from this socket
InputStream and OutputStream objects which provide communication methods.

26

26

Few words about classes for
managing streams

 Suffix: type of stream
 Stream of bytes (InputStream/OutputStream)
 Stream of characters (Reader/Writer)

 Prefix: source or destination
 ByteArray, File, Object …
 Buffered, LineNumber, …

 https://www.developer.com/java/data/understanding-byte-
streams-and-character-streams-in-java.html

InputStream and OutputStream are basic communication classes. They only
allow to read and write bytes. They can be combined with many more elaborated
classes.

The names of theses classes are composed of a prefix and a suffix.

The suffix indicates the type of the stream

- suffix = InputStream or OutputStream for streams of bytes

- suffix = Reader or Writer for a streams of characters (unicode representation)

The prefix indicates the source or destination of the stream

- examples are File or Object

For instance :

- a FileInputStream allows reading bytes from a file

- a FileWriter allows writing characters to a file

27

27

Few words about classes for
managing streams

Streams for reading Streams for writing

Character streams

BufferedReader
CharArrayReader
FileReader
InputStreamReader
LineNumberReader
PipedReader
PushbackReader
StringReader

BufferedWriter
CharArrayWriter
FileWriter
OutputStreamWriter

PipedWriter

StringWriter

Byte streams

BufferedInputStream
ByteArrayInputStream
DataInputStream
FileInputStream
ObjectInputStream
PipedInputStream

PushbackInputStream
SequenceInputStream

BufferedOutputStream
ByteArrayOutputStream
DataOuputStream
FileOutputStream
ObjetOutputStream
PipedOutputStream
PrintStream

Here is a table of the different classes.

28

28

Few words about classes for
managing streams

 InputStreamReader: converts a byte stream into a character
stream

 BufferedReader: implements buffering

BufferedReader br = new BufferedReader(
 new InputStreamReader(socket.getInputStream()));
String s = br.readLine();

 PrintWriter pred = new PrintWriter(
 new BufferedWriter(
 new OutputStreamWriter(
 socket.getOutputStream())));

 PrintWriter: formatted printing

These classes can be combined (piped or chained) to obtain the desirable
behavior.

In the first example, we obtain an InputStream from a socket. From this
InputStream, we create a InputStreamReader which allows reading characters
(Reader) from an InputStream (so it converts a stream of byte into a stream of
characters). From this object, we create a BufferedReader, which provides
buffering features like reading lines of characters.

In the second example, we obtain an OutputStream from a socket. From this
OutputStream, we create a OutputStreamWriter which allows writing characters
(Writer) to an OutputStream (so it converts a stream of characters into a stream of
bytes). From this object, we create a BufferedWriter, which provides buffering
features, and then a PrintWriter which provides formated printing (like println()).

29

29

Reading on a UDP socket

try {
 int p = 9999;
 byte[] t = new byte[10];
 DatagramSocket s = new DatagramSocket(p);
 DatagramPacket d = new DatagramPacket(t,t.length);
 s.receive(d);
 String str = new String(d.getData(), 0, d.getLength());
 System.out.println(d.getAddress()+"/"+d.getPort()+"/"+str);
 …
}
catch (Exception e) {
 System.err.println(e);
}

sender

A rapid look at programming UDP communication in Java.

On the receiving side, we create a DatagramSocket giving a local port number. It
corresponds to the calls in C of : socket() and bind().

Then we can create a DatagramPacket giving an array of bytes.

Then

- receive() reads on the UDP socket and stores the data in the DatagramPacket

- getData() returns a byte array from the DatagramPacket (here we could have
used the t variable)

- getLength() returns the size of the data actually received in the buffer

- getAddress() and getPort() return the address of the sender (IP and port),
allowing to send a response.

30

30

Writing on a UDP socket

try {

int p = 8888; // for receiving a response

byte[] t = new byte[10];

FileInputStream f = new FileInputStream("data.txt");

int r = f.read(t);

DatagramSocket s = new DatagramSocket(p);

DatagramPacket d = new DatagramPacket(t, r,
InetAddress.getByName("thor.enseeiht.fr"), 9999);

s.send(d);

…
} catch (Exception e) {

System.err.println(e);
}

destination

On the sending side, we read in a byte array some data from a file.

We create a DatagramSocket giving a local port number.

Then we can create a DatagramPacket giving the array of bytes containing the
data to send (r is the size of the data we read from the file), and also giving the
destination (an InetAddress for the remote machine and a port from that
machine). We send the packet with send().

31

31

A full example:
TCP + serialization + threads

Passing an object (by value) with serialization

The object to be passed:

public class Person implements Serializable {

String firstname;

String lastname;

int age ;

public Person(String firstname, String lastname, int age) {

 this.firstname = firstname;

 this.lastname = lastname;

 this.age = age;

}

public String toString() {

return this.firstname+" "+this.lastname+" "+this.age;

}
}

Here is an example of client server communication with TCP, with the creation
of a thread in the server on connection reception, and with an object passed with
serialization.

Serialization is a Java mechanism which allows an instance to be copied between
remote hosts (e.g. from a client to a server). The instance is translated into a byte
array on the source machine and the instance is reconstructed on the destination
machine. Serialization applies recursively, meaning that instances referenced (by
a field) from one serialized instance are also serialized (so we can serialize a
graph of objects). To enable serialization, a class must implements the
Serializable interface. Notice that a serializable class should not include
references to non serializable objects (e.g. a system resource like Thread or
Socket).

Here we describe a serializable class (Person) that we will use to demonstrate the
transfer (copy) of an instance on a TCP connection.

32

32

The client

public class Client {
 public static void main (String[] str) {
 try {
 Socket csock = new Socket("localhost",9999);
 ObjectOutputStream oos = new ObjectOutputStream (
 csock.getOutputStream());
 oos.writeObject(new Person("Dan","Hagi",55));
 csock.close();

 } catch (Exception e) {
System.out.println("An error has occurred ...");

 }
}

}

A full example:
TCP + serialization + threads

Here is the client side of the TCP example.

The main() method :

- creates a Socket which connects to a server located at localhost/9999

- from the OutputStream of the socket, it creates an ObjectOutputStream, which
allows writing objects to an OutputStream. This ObjectOutputStream (oos)
serializes objects and sends the data on the connection.

- writes a Person instance on oos. The instance is then serialized.

- finally closes the socket

33

33

The server

public class Server {
 public static void main (String[] str) {
 try {
 ServerSocket ss;
 int port = 9999;
 ss = new ServerSocket(port);
 System.out.println("Server ready ...");
 while (true) {
 Slave sl = new Slave(ss.accept());
 sl.start();
 }
 } catch (Exception e) {
 System.out.println("An error has occurred ...");
 }
 }
}

A full example:
TCP + serialization + threads

Here is the server side of the TCP example.

The main() method :

- creates a ServerSocket bound to local port 9999

- then it loops on connection reception

 - accept() blocks and when resumed by a connection reception,

 it returns a Socket instance.

 - it creates a Slave instance (giving it a reference to the Socket instance)

 Slave is a class which implements a thread (explained next slide).

 - the thread is started

34

34

The slave

public class Slave extends Thread {
 Socket ssock;
 public Slave(Socket s) {
 this.ssock = s;
 }
 public void run() {
 try {
 ObjectInputStream ois = new ObjectInputStream(
 ssock.getInputStream());
 Person v = (Person)ois.readObject();
 System.out.println("Received person: "+ v.toString());
 ssock.close();
 } catch (Exception e) {
 System.out.println("An error has occurred ...");
 }
 }
}

A full example:
TCP + serialization + threads

A way to program a thread is to implement a class which inherits from the
Thread class. This class MUST implement the run() method which is invoked
when the thread starts. NB : a thread is started with the start() method, not the
run() method.

Here, the Slave class :

- inherits from Thread

- has a contructor to receive the socket it has to deal with

- implements a run() method which
 - creates an ObjectInputstream instance (ois) for reading objects from
 the stream of the socket. This ObjectInputstream instance reads data
 from the stream of the socket and deserializes the received objects.
 - reads an object on ois (the instance is deserialized) and casts it to
 Person (it is supposed to be a Person)

35

35

Conclusion

 Programming with sockets
 Quite simple
 Allow fine-grained control over exchanges messages
 Basic, can be verbose and error prone

 Higher level paradigms
 Remote procedure/method invocation
 Message oriented middleware / persistent messages


Many tutorials about socket programming on the Web …
Example : https://www.tutorialspoint.com/java/java_networking.htm

In conclusion, programming with sockets is more or less simple (complex with
C, simple in Java). Its allows to do everything regarding distribution.

But for complex applications, even in Java, it may be really error prone.

This is why higher level programming paradigms were proposed.

In the next lectures, we will study some of them (remote invocation and message
middleware).

Notice that many tutorials are available on the net for socket programming.

