
TP Kubernetes
 Kubernetes is an open-source container management system, freely available. It
provides a platform for automating deployment, scaling, and operations of
application containers across clusters of hosts. Kubernetes gives you the freedom
to take advantage of on-premises, hybrid, or public cloud infrastructure, releasing
organizations from tedious deployment tasks.

In this pratical class, we are going to:

- setup multi-node Kubernetes Cluster on Ubuntu 20.20 server;

- deploy an application and manage it on our deployed Kubernetes;

Prerequisites
Two virtual machines or physical machines, known as nodes, with ubuntu
20.20 server installed.
A static IP address (masterIP) is configured on the first nodes (master node)
and also a static IP (slaveIP) is configured on the second instance (slave
node).
Minimum 4 GB RAM and 2 vCPU per node.
root password is setup on each instance "toto".

Connection to your nodes
Use the following commands to access your server :

The master node port is 130XX and the slave node 130XX+1

Where XX=01-40. This will give you acces to a VM with IP address
192.168.27.(XX+10) and the password is "toto"

Node configurations
You need to configure “hosts” file and hostname on each node in order to allow a
network communication using the hostname. You begin by setting the master and
slave node names.

On the master node run:

ssh ubuntu@147.127.121.1 -p 130XX #connection to master node

ssh ubuntu@147.127.121.1 -p 130XX+1 #connection to slave node

sudo bash

apt-get update -y # On both node

af://n0
af://n6
af://n16
af://n24

On the slave node run :

You need to configure the hosts file. Therefore, run the following command on
both nodes:

You have to disable swap memory on each node. kubelets do not support swap
memory and will not work if swap is active. Therefore, you need to run the
following command on both nodes:

Docker installation
 Docker must be installed on both the master and slave nodes. You start by
installing all the required packages.

Kubernetes installation
Next, you will need to install: kubeadm, kubectl and kubelet on both nodes.

hostnamectl set-hostname master

hostnamectl set-hostname slave

echo "slaveIP slave" >> /etc/hosts

echo "masterIP master" >> /etc/hosts

swapoff -a

wget -qO- https://get.docker.com/ | sh

modprobe br_netfilter

cat <<EOF | sudo tee /etc/sysctl.d/k8s.conf

net.bridge.bridge-nf-call-ip6tables = 1

net.bridge.bridge-nf-call-iptables = 1

EOF

sysctl --system

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo

apt-key add -

cat <<EOF | sudo tee /etc/apt/sources.list.d/kubernetes.list

deb https://apt.kubernetes.io/ kubernetes-xenial main

EOF

apt-get update

apt-get install kubelet kubeadm kubectl

af://n34
af://n37

Good, all the required packages are installed on both servers.

We need to configure kubernetes on both nodes to use the correct docker driver.

As a root user, open the file "/etc/systemd/system/kubelet.service.d/10-
kubeadm.conf" and edit the "KUBELET_CONFIG_ARGS" configuration, i.e add
" --cgroup-driver=cgroupfs " as an argument, then reload systemd

NB: This operation has to be carry-out on both nodes, i.e slave and master

Master node configuration
 Now, it’s time to configure Kubernetes master Node. First, initialize your cluster
using its private IP address with the following command:

Note:

pod-network-cidr = specify the range of IP addresses for the pod network.

You should see the following output:

You have to save the 'kubeadm join' command. The command will be used
to register new worker nodes to the kubernetes cluster.

To use Kubernetes, you must run some commands as shown in the result (as root
).

We can check the status of the master node by running the following command:

systemctl reload

kubeadm init --pod-network-cidr=10.0.0.0/16

mkdir -p $HOME/.kube

sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

sudo chown $(id -u):$(id -g) $HOME/.kube/config

kubectl get nodes

kubectl get pods --all-namespaces

af://n141

you can observe form the above output that the master node is listed as not ready.
This is because the cluster does not have a Container Networking Interface (CNI).
Next, deploy the flannel network to the kubernetes cluster using the kubectl
command.

Wait for a minute and check kubernetes node and pods using commands below.

You should see the following output:

And you will get the 'kube-scheduler-master' node is running as a 'master'
cluster with status 'ready'.

Kubernetes cluster master initialization and configuration has been completed.

Slave node configuration
Next, we need to log in to the slave node and add it to the cluster. Remember the
join command in the output from the Master Node initialization command and
issue it on the Slave Node as shown below:

Once the Node is joined successfully, you should see the following output:

Now, go back to the master node and run the command “kubectl get nodes” to see
that the slave node is now ready (You may wait for some second for the node to be
in ready state):

kubectl apply -f

https://raw.githubusercontent.com/coreos/flannel/master/Documentation/

kube-flannel.yml

kubectl get nodes

kubectl get pods –all-namespaces

sudo kubeadm join ``xxx``.``xxx``.``xxx``.``xxx``:6443 --token

wg42is.1hrm4wgvd5e7gbth --discovery-token-ca-cert-hash

sha256:53d1cc33b5b8efe1b974598d90d250a12e61958a0f1a23f864579dbe67f83e3

0

af://n68

Apache2 deployment (some fun)
We will deploy a little application in our Kubernetes cluster, apache2 web server
with a simple index.php application. We will use the YAML template.

Create a new directory named 'apache' and go to that directory.

You should create a container image named apache-image from a Dockerfile, and
this image should host a php application named app.php.

Dockerfile content

Here is the content of app.php

I considered you can create apache-image container image based on what we did
on previous lab-works.

NB: this docker image should be create on both nodes, slave and master.

Now, you have to create the apache Deployment YAML file 'apache-
deployment.yaml' and paste the following content.

kubectl get nodes

mkdir -p apache/

cd apache/

FROM php:7.2-apache

COPY ./app.php /var/www/html/

 <!DOCTYPE html>

 <html>

 <head>

 <title>TP Cloud EC2</title>

 </head>

 <body>

 <h1>It works!</h1>

 <?php

 echo gethostname();

 ?>

 </body>

 </html>

apiVersion: apps/v1

kind: Deployment

metadata:

 name: apache-deployment

spec:

 selector:

 matchLabels:

 run: apache-app

af://n75

Note:

We're creating a new 'Deployment' named 'apache-deployment'.
Setup the app label as 'apache-app' with 2 replicas.
The 'apache-deployment' will have containers named 'apache-container',
based on 'apache-image' docker image, and will expose the default HTTP
port 80.

You can submit the deployment by running the kubectl command below.

After creating a new 'apache-deployment', check the deployments list inside the
cluster.

Check the nodes the Pod is running on:.

Check your pods' IPs:

We need to create a new service for our 'apache-deployment'. Therefore, create a
new YAML file named 'apache-service.yaml' with the following content.

 replicas: 2

 template:

 metadata:

 labels:

 run: apache-app

 spec:

 containers:

 - name: apache-container

 image: apache-image

 ports:

 - containerPort: 80

kubectl create -f apache-deployment.yaml

kubectl describe deployment apache-deployment

kubectl get pods -l run=apache-app -o wide

kubectl get pods -l run=apache-app -o yaml | grep podIP

apiVersion: v1

kind: Service

metadata:

 name: apache-service

 labels:

 run: apache-app

spec:

 ports:

 - port: 80

 protocol: TCP

 selector:

 run: apache-app

Note:

We're creating a new kubernetes service named 'apache-service'.
The service belongs to the app named "apache-app' based on our
deployment 'apache-deployment'.

To list the pods created by the deployment:

Create the Kubernetes service using the kubectl command below.

Now check all available services on the cluster and you will get the 'apache-
service' on the list, then check details of service.

Accessing the service

Copy the clusterIP and use it to access your application, index.php

The command should be run from the slave node, not the master. This is a
limitation of flannel that just allows accessing the application from slave nodes.

You can observe that there is a load balancing by app-service on the containers
deployed.

Tomcat Deployment
You will demonstrate that you followed the session by deploying the tomcat
architecture of last class in your Kubernetes cluster (2 tomcats instance and 1
service, no need to use the haproxy.cfg file).

 kubectl get pods -l app=apache-app

kubectl create -f apache-service.yaml

kubectl get service

kubectl describe service apache-service

kubectl scale deployment apache-deployment --replicas=0

kubectl scale deployment apache-deployment --replicas=2

kubectl get pods -l run=apache-app -o wide

curl <clusterIP>/app.php

af://n166

Good luck!

	TP Kubernetes
	Prerequisites
	Connection to your nodes
	Node configurations
	Docker installation
	Kubernetes installation
	Master node configuration
	Slave node configuration
	Apache2 deployment (some fun)
	Tomcat Deployment

