

Docker is a set of platform as a service (PaaS) products that use OS-level virtualization to deliver
software in packages called containers.

A container is a standard unit of software that packages up code and all its dependencies so the
application runs quickly and reliably from one computing environment to another. A Docker
container image is a lightweight, standalone, executable package of software that includes
everything needed to run an application: code, runtime, system tools, system libraries and
settings.

Containers are isolated from one another and bundle their own software, libraries and
configuration files; they can communicate with each other through well-defined channels.

At the beginning of April 2018, 23.4 percent of Datadog customers had adopted Docker, up from
20.3 percent one year earlier. Since 2015, the share of customers running Docker has grown at a
rate of about 3 to 5 points per year.

Docker uses a client-server architecture. The Docker client talks to the Docker daemon, which
does the heavy lifting of building, running, and distributing your Docker containers. The Docker
client and daemon can run on the same system, or you can connect a Docker client to a remote
Docker daemon. The Docker client and daemon communicate using a REST API, over UNIX
sockets or a network interface.

The Docker daemon (dockerd) listens for Docker API requests and manages Docker objects
such as images, containers, networks, and volumes.
The Docker client (docker) is the primary way that many Docker users interact with Docker.
When you use commands such as docker run, the client sends these commands to dockerd,
which carries them out. The docker command uses the Docker API. The Docker client can
communicate with more than one daemon.
A Docker registry stores Docker images. Docker Hub is a public registry that anyone can use,
and Docker is configured to look for images on Docker Hub by default. You can even run your
own private registry.

An image is a read-only template with instructions for creating a Docker container. Often, an image is
based on another image, with some additional customization. For example, you may build an image
which is based on the ubuntu image, but installs the Apache web server and your application, as well
as the configuration details needed to make your application run.

You might create your own images or you might only use those created by others and published in a
registry. To build your own image, you create a Dockerfile with a simple syntax for defining the steps
needed to create the image and run it. Each instruction in a Dockerfile creates a layer in the image.
When you change the Dockerfile and rebuild the image, only those layers which have changed are
rebuilt. This is part of what makes images so lightweight, small, and fast, when compared to other
virtualization technologies.

Compose is a tool for defining and running multi-container Docker applications. With Compose,
you use a YAML file to configure your application’s services. Then, with a single command, you
create and start all the services from your configuration.

Exemple of yml file :
version: "3.8"
services:
 web:
 build: .
 ports:
 - "5000:5000"
 links:
 - redis
 redis:
 image: redis

Builds, (re)creates, starts, and attaches to containers for a service.

https://registry.hub.docker.com/_/redis/

Continuous integration (CI) is the practice of automating the integration of code changes from
multiple contributors into a single software project.

	Presentation TITLE
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

