=
€ \%
/. E = B
[- Pom— | — il
\ I R
SBEB T H)
f

— N . _‘/'
Cloud Computing

Virtualization

Boris Teabe
boris.teabe @ inp-toulouse.fr

In this class we will talk about virtualization.

Virtualization: motivations

« Reminder: costs reduction in the cloud
« For the client
« Equipments. administration. place. energy. licences ...
« For the provider (data center)
« Do more with less (profits)
« Especially energy
« It we sell physical machines, we mutualize
« Buildings, equipments (network. UPS. cooling)
« Remark: licencing 1s a touchy issue
« We can mutualize machines by giving the illusion of several
machines on top of a single machine (we sell machines in a [aaS)

his is a reminder of the last class.

Virtualization: definition

« Set of techniques, hardware and/or software, which allow
managing simultaneously on a single machine several operating
systems (called virtual machines (VMs)). Examples: Xen,
VMware, KVM., HyperV, etc,

. CD]ICI‘EIEI}-’ VMM = Virtual Machine monitor

« I execute at the same time several OS on the same hardware

irtualization is the process of running a virtual instance of a computer system in a layer
abstracted from the actual hardware. Most commonly, it refers to running multiple operating
systems on a computer system simultaneously. To the applications running on top of the
virtualized machine, it can appear as if they are on their own dedicated machine, where the
operating system, libraries, and other programs are unique to the guest virtualized system and
unconnected to the host operating system which sits below it.

Virtualization: challenges

« Mainly isolation

« Security: a VM is protected against potential attacks from other
VMs

« Performance: one VM's performance is not affected by other VMs
« Failure: one VM's failure should not affect other VMs

Virtualization: implementation

 Different types of virtualization systems (VMM)

« Full virtualization

« OGS level virtualization

« Para-virtualization

« Hardware assisted virtualization

Types of VMM

Full virtualization: an OS executes applications at user level. The
VMM is one such application. Every instruction from VMs is
emulated by the VMM. The OS executed on a VM is not modified
and can be of any type (Linux. Windows, etc.). Ex: VirtualBox

The VMM can enforce that .
every instruction respects Vi » Via al

Isolation
/,.
Concretely:

« It’s hardware simulation (slow)
« Supports several OS types

Full Virtualization. Virtual machine simulates hardware to allow an unmodified guest OS to be
run in isolation. Guest operating system’s source information will not be modified. It completely
relies on binary translation to trap and virtualize the execution of sensitive, non-virtualizable
instructions sets. It emulates the hardware using the software instruction sets. Due to binary
translation, it often criticized for performance issue. Here is the list of software which will fall
under software assisted (BT).

Types of VMM

« OS level virtualization: the host OS includes mechanisms for
building 1solated containers (VMs). These containers share the same
OS (host). The VMM is integrated in the host OS. Ex: openVZ
chroot, Docker, LXC, etc.

¥

|
v
The modified host is
the VMM and it

enforces isolation
between instances

« Concretely:
o The host OS is modified to managed several instances of itself
« Native code (efficient)
« Partial isolation (a single resource management system) and a
single OS type

OS-level virtualization is an operating system paradigm in which the kernel allows the existence
of multiple isolated user space instance may look like real computers from the point of view of
programs running in them. A computer program running on an ordinary operating system can
see all resources (connected devices, files and folders, network shares, CPU power, quantifiable
hardware capabilities) of that computer. However, programs running inside the isolated user
space instance can only see the contents and devices assigned.

Types of VMM

« Para-virtualization (PV): The VMM replaces the host OS and
behaves as a proxy for accessing the hardware. The host OS is
considered as a VM (privileged) and it is used by the VMM to perform
particular tasks. Constraint: VMs’ OSes have to be modified (to
invoke the VMM for privileged operations). Ex: Xen, VMware, etc.

" héte
s
The VIMIM (small)

enforces isolation
between VIMs

<

!’“ﬁ’

« Concretely:
« A mix between simulation and native. Several OS types
« Each VM is allocated hardware resources and the VMM controls
access to hardware
« hypercalls (a modified OS invokes the VMM)

Paravirtualization. It doesn’t need to simulate the hardware for the virtual machines. The
hypervisor is installed on a physical server (host) and a guest OS is installed into the
environment. Virtual guests aware that it has been virtualized, unlike the full virtualization
(where the guest doesn’t 't know that it has been virtualized) to take advantage of the
functions. In this virtualization method, guest source codes will be modified with sensitive
information to communicate with the host. Guest Operating systems require extensions
to make API calls to the hypervisor.

Types of VMM

« Hardware assisted virtualization (HVM): the hardware is aware ot
virtualization. VMs™ OSes don’t have to be modified. Ex: Xen,
VMware, KVM etc.

The hardware is
extended to help
virtualization

« Concretely:
« Native, but without OS modification
o The hardware 1s able to manage several VMs (MMU, network
device ...)
« Sometimes, para-virtualization is faster or more flexible
(hybrid mode PV-HVM)

Hardware-assisted virtualization eliminates the binary translation and it directly interrupts with
hardware using the virtualization technology which has been integrated on X86 processors
since 2005 (Intel VT-x and AMD-V).

Virtualization: the case of Xen

+ Open source virtualization system
« Large community (including AWS), with associated scientific conferences
« One of the most efficient (~3% overhead)
« Xen is a hypervisor (VMM)
« Kind of kernel (a small Linux), executed on the bare hardware
« Replaces the traditional kernel
« Xen provides 3 virtualization modes
» Para-virtualization (PV) (to be detailed)
» Hardware assisted virtualization (HVM)
« A combination of both (PV-HVM)

en is a hypervisor that runs directly on the system hardware. Xen inserts a virtualization layer
between the system hardware and the virtual machines, turning the system hardware into a pool
of logical computing resources that Xen can dynamically allocate to any guest operating system.

Para-virtualization with Xen

o At startup of a physical machine
« The BIOS provides to the kernel information about the
hardware
« Notably the memory size
» Memory is seen as a contiguous space
« The kernel is loaded into memory
« It initializes its data structures
o The "init" program is started

MNative Paravirtualized
e e

But a VM starts as a physical MRS NS RS R
machine. How can it follow the L] | e—p—

| Applioation ' — Application '
—_— — i Hypesesll

— Symtem Call
""" B Acceleraled System Call

From: The Definitive Guide to the Xen Hypervisor

he BIOS (basic input/output system) is firmware used to perform hardware initialization during
the booting process, and to provide runtime services for operating systems and programs.

0

Para-virtualization with Xen

« Several challenges:
» How to provide to VMs different BIOS versions ?

« How to provide to each VM a contiguous memory while
memory may be fragmented ? What about paging. TLB, MMU
2)

« How to enforce that a VM cannot access the memory from
another VM 7

This VM has a hon

f:ﬂl{]l{?lre_sses {?ID not start c?f— ﬂ 'r"v‘rh'{:h COJ’??'Q‘LJ'DLI'S a{'}:ﬂ'ress E'aua{_,\e
is an issue for VMs which execule .
a standard 0§ T

Hypervisor

Memaory state

Para-virtualization with Xen

« Several challenges:
« How to fairly shared the processor resource?
» And other devices 7 (network, disk, etc)
« How to, how to, how to??77...

In summary, implementing a virtualization system is much tricky

Para-virtualization with Xen: BIOS and CPU

« For the BIOS

« The hvpervisor provides adapted data to each VM

« Through a shared data structure

« The OS executed on the VM 1s modified to used this data structure
« For the CPU

« A VM is given a set of vCPUs (virtual CPU)

« vCPUs are scheduled on pCPUs (physical CPU)

« Similar to user-level threads

Para-virtualization with Xen: memory

« For memory, the hypervisor
« Provide to the VM the illusion of a contiguous memory {(virtual pages)
o Implements a kind of virtualized MMU (with address translations)

-
'@ logical — @ physical Page table | @ logical — @ physical
2 tables - - .
@ @ machine .

@ logical —
0 N-1

hypervisor (hypercalls) i

~ " /'d’,-- ’__,,-"’ \. \
- -~ \
~ Page table G lanical — @ ' '
- " ;_,,f { _@Togical — @ m\h__chlne _\
.-'F""H-‘

9 N

Events forwarded to the VM (page faulis) .
Page table modifications trap to the Vi view E

Hypervisor

Memory state

In order to virtualise the memory subsystem all hypervisors introduce an additional level of
abstraction between what the guest sees as physical memory (often called pseudo-physical in
Xen) and the underlying memory of the machine (machine addresses in Xen). This is usually done
through the introduction of a Physical to Machine (P2M) mapping. Typically this would be
maintained within the hypervisor and hidden from the guest Operating System through techniques

such as the use of Shadow Page Tables.

Para-virtualization with Xen: devices

Dornain O Guessi

Xan Controd Ligar Interface

+ For other devices, Xen relies on the kernel which was initially on
the physical machines (dom0O)
o The dom0 isa privileged VM
+ Other VMs are called domU (executing guest OS})
o The dom0O
« Provides the Xen administration command line
« Provides drivers for other devices (ex. network, disk)

he Split Driver model is one technique for creating efficient virtual hardware. One device driver
runs inside the guest Virtual Machine (aka domain U) and communicates with another
corresponding device driver inside the control domain Virtual Machine (domain 0). This pair of
quesigned device drivers function together, and so can be considered to be a single "split"
river.

Para-virtualization with Xen: devices

« Xen defines a generic mechanism for accessing device drivers
« Based on "splits drivers”
« Atrontend (in the VM) implements a fake device driver
o Abackend (in the domO) represents the VM in the dom(

» Frontend and backend behave as a client/server program

Networking in Xen

domO domU

application

05 } Metwork protocol stack

[driver | @ckten/," ronten

o

s hypervison
Shared memory

[
Metwork card

« The real driver is installed in the dom0

+ The backend sends/receives packets to/from the driver

« The backend and the frontend interoperate via 2 mechanisms:
+ Shared memory
e Signals

Making VMs available on the network

Metwork card

A physical machine

« 3 ways to configure networking
« Route mode: IP routing between VMs
« NAT mode: address translation as with local IPs
» Bridge mode (to be detailed) : MAC level management

Xen and bridge mode networking

[One application]

Cne application

« Allinterfaces (MAC) in a VM have a representant in the dom0
« Managed by an instance of the backend (vif)
« In this mode, a bridge binds all representants
Reception: ethO in promiscuous mode (all MAC @) redirection to the destination
backend
s Emission: redirected to alocal MAC @ or ethO
« VDMs are therefore accessible from the outside

he default (and most common) Xen configuration uses bridging within the backend domain
(typically domain 0) to allow all domains to appear on the network as individual hosts.

In this configuration a software bridge is created in the backend domain (domain 0). The
backend virtual network devices are added to this bridge along with an physical Ethernet device

to provide connectivity off the host.

Starting a Xen VM

« Have a installation of Xen on the physical machine
« Build the image of the VM

« The file system which includes the OS to be executed by the VM. Xen
provides tools for building this image.

« Edit the VM configuration file
« # processors (called vCPU)
« Quantity of RAM
« # network interface

o« Use the Xen command line to start the VM

Exemple of a configuration file:

kernel = "/usr/lib/xen-4.0/boot/hvmloader”
type="hvm’

memory = 4096

vcpus=4

name = "myVM"

vif = ['bridge=xenbr0']

disk = ['/phy:/dev/vg0/windows,hda,w', file:/root/windows.iso,hdc:cdrom,r']
acpi =1

device_model_version = '‘gemu-xen’
boot="d"

sdl=0

serial="pty’

vne=1

Advantages of virtualization

« Migration
+ Moving VMs between physical machines
+ Suspension and memory copy (copy on write)
« Without service interruption
« Backup and recovery
o OS checkpointing
Virtualisation 1s now efficient (used by the HPC community)

Migration. The movement of VMs from one resource to another, such as from one physical host
to another physical host, or data store to data store, is known as VM migration. There are two
types of VM migration: cold and live. Cold migration occurs when the VM is shut down. Live

migration occurs while the VM is actually running.

Virtualization: motivations

Reminder: costs reduction in the cloud
« Forthe client
« Equipments. administration, place. energy. licences ...
« For the provider (data center)
« Do more with less (profits)
« Especially energy
[t we sell physical machines, we mutualize
« Buldings. equipments {network. UPS. cooling)
« Remark: licencing is a touchy issue
We can mutualize machines by giving the illusion of several
machines on top of a single machine (we sell machines in a IaaS)

	Presentation TITLE
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

