
1

1

Storm

Daniel Hagimont
hagimont@enseeiht.fr

This lecture is about the Storm stream processing framework.

Originally, Storm was developed by a startup which was acquired by Twitter.

Later the project was open sourced in the Apache foundation.

This lecture is a rapid presentation of Storm and a demonstration (without any
labwork).

2

2

Apache Storm

Processing of data streams
Real-time (on the fly)

Pretty much like Spark streaming

Developed in Clojure (a dialect of Lisp)

As Hadoop, Spark or Spark-streaming
Distributed

Reliable

Open-source (Apache)

Used by large companies (e.g. Twitter)

Storm is a platform for the real time processing of data streams. It has many
similarities with Spark Streaming regarding the goals, but differs regarding the
implementation strategy.

Storm was developed in Clojure (functional programming).

It shares many characteristics with big data platforms like Hadoop, Spark or
Spark Streaming: distributed reliable, opensource and used by large companies.

3

3

Apache Storm: basic concepts

Spouts: data sourcesSpouts: data sources (can be an application)

Its architecture relies on 2 types of nodes (nodes here do not refer to machines,
but to daemons which include processing) : Spouts and Bolts.

A Spout is a data source (in red in the figure), which may acquire data from a file
or a network connection. A spout can emit data in direction of several bolts.

4

4

Apache Storm: basic concepts

Bolts: Bolts: data processing

A Bolt is a data processing unit which includes a particular treatment on received
data. It can emit data in direction of several other bolts.

5

5

Apache Storm: basic concepts

Topology: Topology: interconnectioninterconnection of spouts and bolts
 Represent an Apache Storm application

Execute indefinitely (unlike MapReduce applications)

A topology is an interconnection of spouts and bolts.

It corresponds to an global application.

It executes indefinitely like Spark Streaming applications.

6

6

Apache Storm: architecture

A Storm cluster

NimbusNimbus

ZookeeperZookeeper ZookeeperZookeeper

SupervisorSupervisor

Node#1

SupervisorSupervisor SupervisorSupervisor SupervisorSupervisor

Node#2 Node#3 Node#4

A Storm cluster is composed of a global coordinator called Nimbus and a set of
execution engines (called supervisors) which hosts spouts and bolts.

In the middle, zookeeper is a distributed middleware used for coordination
between Nimbus and Supervisor nodes.

7

7

Apache Storm: architecture

Nimbus (comparable to Yarn’s ResourceManager)
Entry point of a Storm cluster

Receive and deploy topologies (applications)

Receive monitoring information from nodes

Re-schedule a topology in case of failure

Supervisor (comparable to Yarn’s NodeManager)

Zookeeper (coordination between them)

Nimbus is the coordinator of the platform. It can be compared to Yarn's
ResourceManager. It is responsible of the deployment (on nodes) and
management of topologies.

Supervisors are comparable to Yarn's NodeManagers. They manage resources
locally.

Zookeeper is a distributed middleware which provides a distributed naming
scheme (like a filesystem) and the possibility to share (read and write)
information and synchronize. It is used for distributed coordination of Nimbus
and Supervisors.

8

8

Apache Storm: architecture

On a Node runs a Supervisor
Correspond to Yarn’s NodeManager

Listen to reception of work
Worker: process

Executor: thread

Task: bolt/spout

Monitor resource usage

Can be dynamically added

Each Node runs a Supervisor. It listens to the reception of jobs.

Jobs may be scheduled on processors. More precisely, Supervisors manage
processes which host threads, a thread executing for one topology. Several spouts
and bolts may be scheduled on one thread.

Supervisors monitor resource usage and report it to Nimbus.

Supervisors can be added dynamically in a cluster.

9

9

Apache Storm: data

Spouts/bolts exchange Tuples
<v1, v2, v3 ...>

A value in a Tuple can be of any serializable type

Each spout/bolt defines the type of emitted tuples

(1-tuple, 2-tuple …) and field names

 Routing
A emitted tuple is sent on each of its outgoing connections

Spouts and bolts exchange tuples which include Java objects.

An emitted tuple (by a spout or a bolt) is sent to each outgoing connection.

10

10

Apache Storm: example

The word count example
Keeps stats on words occurring in tweets or logs

RandomSentenceSpout SplitSentence

<Sentence>

WordCount

<word> <word, count>

Here is a topology which implements the Wordcount application.

RandomSentenceSpout is a spout which emits a sentence (1-tuple <sentence>)
randomly from a set of sentence (to simulate the arrival of sentences from the
net).

SplitSentence is a bolt which receive sentences, splits them into words and emits
words (1-tuple <word>).

WordCount is a bolt which receives words, manages a wordcount table and emits
 each wordcount which is modified (2-tuple <word, count>).

11

11

Apache Storm: word count

 public static class RandomSentenceSpout extends BaseRichSpout {
 SpoutOutputCollector _collector;
 Random _rand;

 public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
 _collector = collector;
 _rand = new Random();
 }

 public void nextTuple() {
 Utils.sleep(100);
 String[] sentences = new String[]{ "the cow jumped over the moon", "an apple a day keeps the doctor
away", "four score and seven years ago", "snow white and the seven dwarfs", "i am at two with nature" };
 String sentence = sentences[_rand.nextInt(sentences.length)];
 _collector.emit(new Values(sentence));
 }

 public void ack(Object id) {}

 public void fail(Object id) {}

 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("sentence"));
 }
 }

 initialization

 emission of a sentence every 100ms

 output: 1-tuple

Here is the implementation of RandomSentenceSpout.

The spount receives with the open() method the collector reference which allows
emitting data (the variable is save in a _collector variable).

Storm invokes the nextTuple() method all the time (iteratively). If there's nothing
to send, it is supposed to wait a little time (not to waste too muche CPU) and
return.

ack() and fail() allow managing a queue of messages and to re-emit them if thir
processing failed.

Notice that the declareOutputFields() method allows declaring the fields of
emitted tuples (here a 1-tuple with a "sentence" field).

12

12

Apache Storm: word count

public static class SplitSentence extends BaseBasicBolt {

 public void execute(Tuple tuple, BasicOutputCollector collector) {
String sentence = tuple.getString(0);
StringTokenizer st = new StringTokenizer(sentence);

 while (st.hasMoreTokens()) {
 collector.emit(new Values(st.nextToken()));
 }
 }

 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("word"));
 }
 }

 output: 1-tuple

 handling a received tuple

A received tuple is a sentence

The sentence is split into words

Words are emitted

Here is the implementation of SplitSentence.

It defines the execute() method which includes the treatment to apply on received
tuples :

- tuple is the received tuple

- collector is the variable for emitting tuples

The implementation of the method splits the received sentence into words and
emits one tuple for each word.

As in the previous class, the declareOutputFields() method allows declaring the
fields of emitted tuples (here a 1-tuple with a "word" field).

13

13

Apache Storm: word count

A received tuple is a word

A counter for each word in a Map

The words and its counter are emitted

 public static class WordCount extends BaseBasicBolt {
 Map<String, Integer> counts = new HashMap<String, Integer>();

 public void execute(Tuple tuple, BasicOutputCollector collector) {
 String word = tuple.getString(0);
 Integer count = counts.get(word);
 if (count == null)
 count = 0;
 count++;
 counts.put(word, count);
 collector.emit(new Values(word, count));
 }

 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("word", "count"));
 }
 }

 output: 2-tuple

 handling a received tuple

Here is the implementation of WordCount.

Like the previous bolt, it implements the execute() and declareOutputFields()
methods.

declareOutputFields: it emits 2-tuples including "word" and "count" fields.

execute: it counts the word occurrences in a Hashtable and emits the new count
for each received word.

14

14

Apache Storm: word count

public class WordCountTopology {

 public static class RandomSentenceSpout extends BaseRichSpout {…}
 public static class SplitSentence extends BaseBasicBolt {…}
 public static class WordCount extends BaseBasicBolt {…}

 public static void main(String[] args) throws Exception {

 TopologyBuilder builder = new TopologyBuilder();

 builder.setSpout("spout", new RandomSentenceSpout(), 5);
 builder.setBolt("split", new SplitSentence(), 8).shuffleGrouping("spout");
 builder.setBolt("count", new WordCount(), 12).fieldsGrouping("split", new Fields("word"));

 Config conf = new Config();
 conf.setDebug(true);

 LocalCluster cluster = new LocalCluster();
 cluster.submitTopology("word-count", conf, builder.createTopology());

 Thread.sleep(10000);

 cluster.shutdown();
 }
}

 creation of the topology

 number of threads shuffle or field grouping

This is the main program. It defines the Storm topology.

It is composed of 5 instances of RandomSentenceSpout. Each instance is
executed by a different thread.

It is composed of 8 instances of SplitSentence bolt. The routing of messages
fromRandomSentenceSpout instances to SplitSentence instances is defined with
the shuffleGrouping policy.

It is composed of 12 instances of WordCount bolt. The routing of messages from
SplitSentence instances to WordCount instances is defined with the
fieldsGrouping policy (with field "word").

Grouping policies are explained in the next slide.

15

15

Apache Storm: routing

Spouts/bolts execute in parallel (threads/tasks)

When a tuple is sent from Bolt A to Bolt B, who receive
it ?

Many modes (grouping)

shuffleGrouping: one tasks randomly chosen

fieldsGrouping: same field value=> same task

allGrouping, directGrouping, customGrouping …

For Wordcount: the same word goes to the same task

Spouts and bolts are instantiated several times and executed in parallel. Each
instance is associated with a different thread.

The binding between a bolt A and a bolt B actually means a binding between a
pool of instances of bolt A and a pool of instances of bolt B. The behavior of this
binding is defined with a mode of grouping, defining which instance receives an
emitted message.

- shuffleGrouping means that the target instance is randomly chosen

- fieldsGrouping with a given field means that tuples with the same value for that
field should always be transmitted to the same target instance.

- allGrouping means messages are replicated and sent to all instances

There are many other grouping modes.

In the WordCount application, for the binding between SplitSentence instances
and WordCount instances, the fieldsGrouping allows to always send the same
word to the same instances (task), so that the count will be consistent.

16

16

Demonstration

Install Apache Storm
tar xzf apache-storm-0.9.5.tar.gz

Compile the WordCount application
javac -cp "../apache-storm-0.9.5/lib/*" WordCountTopology.java

Or in Eclipse
Add storm-core-0.9.5.jar in the buildpath

Observe traces in debug mode
java -cp "../apache-storm-0.9.5/lib/*":. WordCountTopology |
grep "Emitting: count"

Here is the procedure to execute a Storm topology locally.

Installation in a cluster is well documented.

17

17

Demonstration

Install Apache Storm
tar xzf apache-storm-0.9.5.tar.gz

Compile the WordCount application
javac -cp "../apache-storm-0.9.5/lib/*" WordCountTopology.java

Or in Eclipse
Add storm-core-0.9.5.jar in the buildpath

Observe traces in debug mode
java -cp "../apache-storm-0.9.5/lib/*":. WordCountTopology |
grep "Emitting: count"

18

18

Conclusion

Distributed stream processing platform
Defining topologies

Replication for parallelism

Routing of data

Recently: spark-streaming
Same objective : stream processing

Different approach
Spark-streaming : batch of data (RDDs) processed by Spark

Storm : data are routed through a topology

Spark benefits from a large eco-system

Storm is known to be more efficient

In conclusion,Spark-streaming and Storm share the same objective (stream
processing) but they have different approaches.

Spark-streaming slices incoming data into batches (RDDs) which are processed
with the Spark engine.

Storm deploys computing components (instances of spout or bolt) in the cluster
and routes incoming data in the topology.

Spark is known to be part of a very rich ecosystem

Storm is known to be more efficient

