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Hadoop
Daniel Hagimont

https://www.google.fr/search?q=daniel+hagimont+home+page

The lecture considers the first example of software infrastructure for the 
treatment of big data. This is HADOOP.
Hadoop was developed and popularized by Google.
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Solutions

Two main families of solutions
Processing in batch mode (e.g. Hadoop)

Data are initially stored in the cluster
Various requests are executed on these data
Data don't change / requests change

Processing in streaming mode (e.g. Storm)
Data are continuously arriving in streaming mode
Treatments are executed on the fly on these data
Data change / Requests don't change

Hadoop is an instance of the first category: processing in batch mode.

Repeat from the introduction presentation :
Data are initially stored on the computers' disks. For instance a very large 
dataset is divided into blocks and the blocks are distributed on the machines. 
Then, various requests can be issued to analyze the data. Such a request is 
divided into sub-requests which will handle the blocks on the different machines 
(in parallel). What is important here is that data are installed in the cluster 
(installed means here that data don't change, they are here to be read and 
analyzed, not modified) and that many requests can be issued on the same 
dataset.
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Illustrative example

We have to manage many stores around the world
A large document registers all the sales

For each sale : day – city – product - price
Objective : compute the total of sales per store

The traditional method
A Hashtable memorizes the total for each store (<city, total>)
We iterate through all records

For each record, if we find the city in the Hashtable, we add the price

Let's use an illustrative example.
We consider the management of a set of stores geographically distributed.
A large document gathers records of all the sales, with for each sale : the day, the 
city, the product code and the price.
One request we may issue on the document is to compute for each store the total 
of the sales.
The traditional method is a sequential program which iterates over all the records. 
A hashtable registers the total of the sales for each store (<city, total>). In the 
iteration, for each record, we accumulate the prices for each store.
Figure top : the content of the document
Figure bottom left : the hashtable state after handling of the 3 first lines
Figure bottom right :  the hashtable state after handling of the last line
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Illustrative example
What happens if the document size is 1 Tb ?

I/O are slow
Memory saturation on the host
Treatment is too long

Map-Reduce
Divide the document in several fragments
Several machines for computing on the fragments
Mappers : execute in parallel on the fragments
Reducers : aggregate the results from mappers

Mappers Reducers

The traditional sequential execution is not satisfactory if the dataset to handle is 
very large (e.g. 1 TB).
- data are stored on disk and have to be loaded to be processed, and IO are slow
- memory can be a bottleneck as it is used to load data and also to store the 
hashtable
The sequential processing of the whole document may take a very long time 
depending on the size of the document.
The strategy introduced by Google is called map-reduce. It is a way to divide a 
request into many sub-requests. It is also a programming model which, when it is 
followed, helps the division into several sub-requests.
The principle is to divide the document (the data) into several fragments which 
are stored on different machines. Then there are 2 types of tasks executed on the 
machines. Mappers execute on each machine where a fragment is stored and 
process the local fragment. They generate results that are sent to Reducers which 
are responsible for aggregating the results.
Notice that Mappers and Reducers execute in parallel, thus improving 
performance for big documents.
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Illustrative example
Mappers

Read from a document fragment <city, price> pairs
Send them to reducers according to city

Reducers
Each reducer is responsible for a set of city
Each reduce computes the total for each city

In our illustrative example, each Mapper executes on one fragment. It reads the 
fragment from disk, constructs <city, price> pairs and sends them to the 
Reducers.
Each reducer is responsible for generating a part of the final result, independently 
from other reducers. To enforce this independence between Reducers, it 
guarantees that a pair with a given city always goes to the same Reducer. This 
Reducer computes the total for that city. Therefore, the final result is the 
concatenation of the results (a table of <city, total>) from the different Reducers.
In the figure, each Mapper constructs and sends <city, price> pairs which are sent 
to the Reducers according to the city. Here, the first reducer receives pairs with 
the Miami city, while the second reducer receives pairs with the LA and NYC 
cities.
The first reducer generates a result : <Miami, 300>
The second reducer generates a result : <LA, 603>, <NYC, 432>
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Hadoop

Support the execution of Map-Reduce applications in a 
cluster

The cluster could group tens, hundreds or thousands of nodes
Each node provides storage and compute capacities

Scalability
It should allow storage of very large volumes of data
It should allow parallel computing of such data
It should be possible to add nodes

Fault tolerance
If a node crashes

Ongoing computing should not fail (jobs are re-submitted)
Data should be still available (data is replicated)

Hadoop is a framework (software infrastructure) introduced by google, which 
implements the map-reduce model. It allows the execution of map-reduce 
applications on a cluster of hundreds or thousands of machines. Each machine is 
supposed to have a independent storage (disk) to host fragments and a compute 
capacity for handling fragments.
Hadoop is scalable as it allows storing very large datasets and processing such 
data in parallel for reducing execution time. Scalability means here that by 
adding new nodes (machines), you increase the storage and computing capacity 
of the platform.
Hadoop is also fault tolerant :
- regarding storage, fragments are replicated on several nodes, so that data is still 
available if a node crashes
- regarding computation, a task (mapper of reducer) which fails can be re-
submitted, potentially on a different machine.
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Hadoop principles

Two main parts
Data storage : HDFS (Hadoop Distributed File System)
Data treatment : Map-Reduce

Principle
Copy data to HDFS – data is divided and stored on a set of nodes
Treat data where they are stored (Map) and gather results 
(Reduce)
Copy results from HDFS

Copy from external
to cluster

Copy from cluster
to external

Useful data

Useful data

Hadoop is composed of 2 main parts :
- HDFS which is the Hadoop Distributed File System, allowing to store data 
(fragments) on the cluster's machines.
- Hadoop which is the engine allowing to execute map-reduce jobs.

The general usage principle :
- your data are initially in an external storage (out of HDFS)
- you copy the data to HDFS
- the mappers and reducers are executed on the fragments
- the results (useful data) are available in HDFS
- you can copy the results from HDFS to the external storage



8

8

A new file system to read and write data in the cluster
Files are divided in blocks between nodes
Large block size (initially 64 Mb)
Blocks are replicated in the cluster (3 times by default)
Write-once-read-many : designed for one write / 
multiple reads
HDFS relies on local file systems

HDFS : Hadoop Distributed File 
System

HDFS is a file system distributed over the cluster.
When you copy a large file to HDFS, it is divided into blocks (fragments) 
distributed over the cluster' nodes.
Block size is significantly large, so that mappers execution time is also 
significant. Initially, the default block size in Hadoop was 64 MB, it's currently 
128 MB.
Each block is replicated (3 times by default) on several nodes, so that a node 
failure does not compromise the blocks availability.
Files in HDFS are read-only. The goal is to analyze data from these files and 
generates new data, not to modify the initial data. We say that HDFS is write-
once-read-many.
HDFS relies on the local file system to store data on machines.
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HDFS architecture

This figure illustrates the architecture of HDFS.
At the bottom, DataNodes are daemons that run on each node of the cluster. A 
DataNode allows reading and writing blocks on the local machine.
A global daemon called NameNode allows writing/reading files to/from HDFS. 
The NameNode is the entry point used by clients of HDFS. When a client 
invokes (write) the copy of a file to HDFS, the file is split into several blocks 
which are copied to DataNodes. Each block is replicated in 3 different 
DataNodes. The NameNode registers for each file its pathname in HDFS (in a 
logical hierarchy) and the location of its blocks in the cluster (the DataNodes 
where the blocks are stored).When a client invokes (read)  the copy of a file from 
HDFS, the NameNode knows the location of the blocks which compose the file. 
It can then read the blocks from the DataNodes and reconstruct the file to be 
returned to the client.
For fault tolerance, a SecondaryNameNode is launched and can replace the 
NameNode in case of failure.
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Execution scheme

block 0

block 1

block 2

Here is a more precise illustration of the execution scheme of a Hadoop 
application.
For each block of a file to handle, a mapper (map operation, we say a map) is 
executed on one node where the block is located. This map generates results 
(actually pairs, remember <city, price> in the previous example). These pairs 
generated by each map are sorted and sent to the reducers, all pairs with the same 
key (the first field of the pair) going to the same reducer. Each reducer (we say a 
reduce) aggregates all the pairs it receives and generates a fragment (part) of the 
final result. Each fragment of the final result is a block in HDFS.
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Programming

Basic entity : key-value pair (KV)
The map function

Input : KV
Output : {KV}
The map function receives successively a set of KV from the 
local block

The reduce function
Input : K{V}
Output : {KV}
Each key received by a reduce is unique

An application which processes a large dataset with Hadoop has to be 
programmed following the Hadoop programming model.
In Hadoop, every handled data is a key-value pair (KV).
A map reads a block from HDFS locally. The block is supposed to include KV. 
Either the file is a KV file and then the map reads these KV, or the file is a text 
file and then the map reads lines returned as KV like <line-number, line>
The map executes a map() function (programmed by the developer) for each KV 
it reads. Therefore, the map() function receive one KV and it may generate any 
number of KV.

A reduce should receive a set of KV, but remember that for one key K, all the 
KV are going to the same reduce. Actually, the Hadoop system aggregates all the 
KV with the same key K into a unique pair <K,{V}>.
For each different K that a reduce receives, it invokes a reduce() function 
(programmed by the developer). This function receives <K,{V}> and may 
generate any number of KV.

(K1,V1)(K2,V2) (K1, V3) (K2, V4)  >>> (K1, {V1, V3}) (K2, {V2,V4})
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WordCount example

The WordCount application
Input : a large text file (or a set of text files)

Each line is read as a KV <line-number, line>
Output : number of occurrence of each word

  Hello World Bye World
  Goodbye Man

  Hello Hadoop Goodbye Hadoop
  Goodbye Girl

Map1

  < Hello, [1,1]>
  < World, [1,1]>
  < Bye, [1]>
  < Goodbye, [1,1,1]>
  < Man, [1]>
  < Hadoop, [1,1]>
  < Girl, [1]>

Blocks

  < Hello, 2>
  < World, 2>
  < Bye, 1>
  < Goodbye, 3>
  < Man, 1>
  < Hadoop, 2>
  < Girl, 1>Map2

Merge
Reduce

  < Hello, 1>
  < World, 1>
  < Bye, 1>
  < World, 1>
  < Goodbye, 1>
  < Man, 1>

  < Hello, 1>`
  < Hadoop, 1>
  < Goodbye, 1>
  < Hadoop, 1>
  < Goodbye, 1>
  < Girl, 1>

Let's see an example. This example is the most popular. It is used in any Big Data 
 tools as a demonstrator.
This example is the WordCount application. The goal is to count the number of 
occurrence of each word in a text.
For instance, if the document to treat is

Hello World Bye World Goodbye
The final result is

< Hello, 1>< World, 2>< Bye, 1>< Goodbye, 1>

Each block is read line by line and the map() function is called for each line. The 
map() function splits the line into words (using the blank separator) and generates 
a KV <word, 1> for each word. This KV indicates 1 occurrence of that word. 
In this figure, we assume we have only one reduce, so all the generated KV go to 
the unique reduce. The reduce invokes the reduce() function for each different K. 
This reduce() function counts the number of 1 behind a K.
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public static class TokenizerMapper
       extends Mapper<Object, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
    public void map(Object key, Text value, Context context
                    ) throws IOException, InterruptedException {
      String tokens[] =  value.toString().split(" ");
      for (String tok : tokens) {
        word.set(tok);
        context.write(word, one);
      }
    }
}

Map
map(key, value) → List(keyi, valuei)

  Hello World Bye World
  < Hello, 1>
  < World, 1>
  < Bye, 1>
  < World, 1>

This class implements the behavior of the mapper.
The map() method receives as parameter a KV (parameters key and value of the 
method). In the WordCount example, this KV is <line-number, line>.
The last parameter of the map() method is (context), a reference to an object 
allowing to generate KV.
The map() method splits (with a Tokenizer object) the line into words (using the 
blank separator) and generates a KV <word, 1> for each word. 
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Sort and Shuffle

Sort : group KVs whose K is identical
Shuffle : distribute KVs to reducers
Done by the framework

Map1

Map2

  < Hello, 1>
  < World, 1>
  < Bye, 1>
  < World, 1>
  < Goodbye, 1>
  < Man, 1>

  < Hello, 1>`
  < Hadoop, 1>
  < Goodbye, 1>
  < Hadoop, 1>
  < Goodbye, 1>
  < Girl, 1>

  < Hello, [1,1]>
  < World, [1,1]>
  < Bye, [1]>
  < Goodbye, [1,1,1]>
  < Man, [1]>
  < Hadoop, [1,1]>
  < Girl, [1]>

Reduce

All the generated KV are sorted and grouped depending on K (all the KV with 
the same K are fusionned,  giving a <K,{V}> pair), and sent to the reducers.
This is done by the Hadoop framework. It is possible to specialize this 
mechanism to control the distribution of keys between reducers if we have 
several reducers.
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Reduce
reduce(key, List(valuei)) → List(keyi, valuei)

public static class IntSumReducer
       extends Reducer<Text,IntWritable,Text,IntWritable> {
    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values, Context context
                       ) throws IOException, InterruptedException {
      int sum = 0;
      for (IntWritable val : values) {
        sum += val.get();
      }
      result.set(sum);
      context.write(key, result);
}}

  < Hello, [1,1]>
 

  < Hello, 2>

This class implements the behavior of the reducer.
The reduce() method receives as parameter a K{V} (parameters key and values 
of the method). In the WordCount example, this K{V} is <word, {1}>.
The last parameter of the reduce() method is (context) a reference to an object 
allowing to generate KV.
The reduce() method aggregates the values (makes the sum) and generates a KV 
<word, sum> for the word. 
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Several reduces

  < Man, [1]>
  < Hadoop, [1,1]>
  < Girl, [1]>

  < Man, 1>
  < Hadoop, 2>
  < Girl, 1>

ReduceMap1

Map2

shuffle
&

sort

  
  < Hello, [1,1]>
  < World, [1,1]>
  < Bye, [1]>
  < Goodbye, [1,1,1]>

  < Hello, 2>
  < World, 2>
  < Bye, 1>
  < Goodbye, 3>

  < Hello, 1>
  < World, 1>
  < Bye, 1>
  < World, 1>
  < Goodbye, 1>
  < Man, 1>

  < Hello, 1>`
  < Hadoop, 1>
  < Goodbye, 1>
  < Hadoop, 1>
  < Goodbye, 1>
  < Girl, 1>

In this figure, we consider several reducers.
The K (words) are distributed between the 2 reduces. For instance, the pairs 
associated with the Hello word (generated by Map1 and Map2) are both sent to 
the first reducer. For this word, the reducer receives a pair <Hello, [1,1]> and 
aggregates the values, generating a pair <Hello, 2>.
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Combiner functions

Reduce data transfer between map and reduce
Executed at the ouput of map
Often the same function as reduce

shuffle
&

sort

  < Hello, 1>
  < World, 2>
  < Bye, 1>
  < Goodbye, 1>
  < Man, 1>

  < Hello, 1>`
  < Hadoop, 2>
  < Goodbye, 2>
  < Girl, 1>

Reduce

Combiner

Map1

Map2

  < Hello, 1>
  < World, 1>
  < Bye, 1>
  < World, 1>
  < Goodbye, 1>
  < Man, 1>

  < Hello, 1>`
  < Hadoop, 1>
  < Goodbye, 1>
  < Hadoop, 1>
  < Goodbye, 1>
  < Girl, 1>

  < Man, [1]>
  < Hadoop, [2]>
  < Girl, [1]>

  
  < Hello, [1,1]>
  < World, [2]>
  < Bye, [1]>
  < Goodbye, [1,2]>

In some applications, a map may generate a lot of pairs which can be aggregated 
at the exit of the map, before going through the network. This is a way to 
decrease the network traffic and therefore to optimize performance.
This is possible in Hadoop thanks to a combiner function which is executed at the 
exit of each map. The KV are sorted and grouped at the exit of the map, 
generating a set of <K,{V}> which are handled by the combiner function in the 
same way as the reduce function, except that this is done on the same node as the 
map (while the reducer is on a different node).
In the figure, the combiner function is able to aggregate pairs with identical 
words at the exit of Map1 and Map2.
The interface of a combiner function is the same as the interface of a Reduce 
function.
Notice that in the WordCount application, we can use the implementation of the 
reduce function as a combiner function. This is not the case for all applications.
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Main program

public class WordCount {
  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    Job job = Job.getInstance(conf, "word count");
    job.setJarByClass(WordCount.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));
    System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}     

Here is the main class of the WordCount application.
It creates a new job which is initialized with :
- the main class
- the mapper class
- the combiner class (the same as the reducer class)
- the reducer class
- the classes for the output (for K and V)
- the path where input data will be found
- the path where output data will be stored

These paths refer to files on the local file system if we run Hadoop standalone 
(i.e. locally to test a program), or to files in HDFS if we run Hadoop in cluster 
mode.
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Execution in a cluster

DataNode

Map

HDFS

DataNode DataNode DataNode DataNode DataNode

ReduceMap Map MapReduce

This figure illustrates the execution in a cluster.
HDFS run on all the node with a DataNode daemon.
When running an application, several maps are executed on nodes where blocks 
are stored. Maps are generating KV which are transmitted to one reduce 
according to K (blue or red). Each reduce generates a result block which is stored 
locally in HDFS.
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Yarn : Yet Another Resource 
Negociator

YARN is a resource manager used to deploy Hadoop applications, but also other 
types of application, in a cluster.
Yarn is composed of :
- a ResourceManager daemon. It's the front-end of Yarn. It is run on one node of 
the cluster and receives job submissions. 
- NodeManager daemons. A NodeManager is run on each node of the cluster. It 
manages containers (nothing to do with Docker) for the execution of tasks (map 
or reduce or others). It keeps track of running tasks and available resources 
(CPU, memory).
The ResourceManager interacts with NodeManagers in order to keep track of 
available resources globally and to deploy tasks on NodeManagers.
When an application is launched, an ApplicationManager is created, which 
coordinates the execution of the different tasks within the application.
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Yarn : Yet Another Resource 
Negociator

When a Hadoop map-reduce application is launched (at the ResourceManager), 
an ApplicationManager is created and launched in a container. This 
ApplicationManager knows that it has to create and launch a given number of 
map and reduce tasks. It asks the ResourcesManager for new containers for these 
tasks.
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A rich ecosystem

Hadoop is only a part of a rich ecosystem. 
Hadoop is composed of HDFS (figure - bottom) and Hadoop and Yarn (figure – 
center). 
Spark (figure – top) proposes another engine and programming model for big 
data applications.
Storm (figure- left) introduces a framework for processing streams of data in real-
time.
The 2 previous services (Spark and Storm) will be presented in next lectures.
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Hadoop in action

Pre-requisite
Java 8 installed (JAVA_HOME defined)
Configure ssh for ssh without any question (including 0.0.0.0) 

Install hadoop
tar xzf hadoop-2.7.1.tar.gz
Define environment variables

export HADOOP_HOME=<path>/hadoop-2.7.1
export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH

The following slides describe the main instructions for using Hadoop.

You should have Java installed and you should configure ssh to be able to log on 
any node of the cluster without any question (known_hosts, password).
Installing Hadoop is simply expanding an archive. Notice that in a cluster, the 
binaries should be accessible at the same path on any node. This is obvious with 
proper NFS mounts.
You have to define environment variables (store that in your bashrc).
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Hadoop in action

Development
Compiling without ID (Eclipse, VSCode)

hadoop com.sun.tools.javac.Main <java-source-file>
With an IDE

Create a Java Project
Add jars to your project

• $HADOOP_HOME/share/hadoop/common/hadoop-common-2.7.1.jar
• $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-common-2.7.1.jar
• $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.7.1.jar

Your application should be packaged in a jar
• jar cf wc.jar -C hadoop-wordcount/bin package
• Replace "package" by "." if you don't have any package
• Jar tf wc.jar (for checking the content of your jar file)

As usually, I prefer using an IDE for edition of code only and not for running 
programs (I run programs with shell commands only).

The first command is a shortcut for compiling without IDE. You can also simply 
compile with Java if you provide the necessary jars that are given below.
If you use Eclipse or VSCode, you just need to create a Java project and add the 
given jars to your project.
Assuming that your project is called hadoop-wordcount, you can create an 
archive (jar) of the compiled application with the command "jar cf".
"-C" means changing to that directory
"package" is the name of the package embedding your classes
This archive is what you give to Hadoop to launch an application.
Replace "package" by "." if you don't have any package in your project.
It's interesting to check the content of the archive with "jar tf".
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Hadoop – standalone

Administration
Format HDFS

hdfs namenode -format
Start HDFS

start-dfs.sh
you can then check with jps that daemons are there 
(DataNode/NameNode/SecondaryNameNode)

File management in HDFS
hdfs dfs -put <local-file> <hdfs-file>
Other commands : get, cat, rm, mkdir, rmdir ...

Execution
hadoop jar <jar-file> <java-class-name> <input-dir> <output-dir>

Here are the instructions for testing Hadoop locally (local machine).
You have instructions for :
- formatting HDFS
- starting HDFS
- managing files in HDFS
- running an hadoop application
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Hadoop – standalone - example

hdfs namenode -format
start-dfs.sh
jps
hdfs dfs -mkdir /input
hdfs dfs -put filesample.txt /input
hadoop com.sun.tools.javac.Main WordCount.java
jar cf wc.jar *.class
hadoop jar wc.jar WordCount /input /output
hdfs dfs -cat /output/*
stop-dfs.sh

This is a complete example where :
- we start HDFS
- create a /input directory in HDFS
- copy filesample.txt in this directory of HDFS
- compile WordCount.java
- create the archive of the compiled application
- launch the application. Data to be processed are taken in the /input directory in 
HDFS. The results are to be stored in a /output directory that should not exist and 
will be created.
- show everything (the results) that was stored in /output
- stop HDFS
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Hadoop – yarn mode

Configuration
Files to configure in <hadoop-home>/etc/hadoop

<hadoop-home>/etc/hadoop/hadoop-env.sh
<hadoop-home>/etc/hadoop/mapred-env.sh
<hadoop-home>/etc/hadoop/core-site.xml
<hadoop-home>/etc/hadoop/hdfs-site.xml
<hadoop-home>/etc/hadoop/mapred-site.xml
<hadoop-home>/etc/hadoop/yarn-site.xml
<hadoop-home>/etc/hadoop/masters
<hadoop-home>/etc/hadoop/slaves

Look at tutorials

To execute Hadoop in cluster mode, you have to configure a set of files (not 
much things to edit in each file).
I don't detail these configuration file here.
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Hadoop – yarn mode

Deployment
hdfs namenode -format
start-dfs.sh
start-yarn.sh
mr-jobhistory-daemon.sh --config <hadoop-home>/etc/hadoop 
start historyserver

Started daemons 
on slave nodes : one DataNode daemon (hdfs) and one 
NodeManager daemon (yarn)
on the master node : one NameNode and one 
SecondaryNameNode daemon (hdfs) and one ResourceManager 
daemon (yarn) 

Monitoring
HDFS : master:50070
YARN : master:8088
JobHistory : master:19888

In the cluster mode, the deployment is about the same, except that you have to 
run a start-yarn.sh command which starts the ResourceManager and 
NodeManagers.
Optionally, you can start a jobhistory server which logs all the jobs that were run 
in the cluster.

Once deployed, you should observe the following daemons :
- the master node is the node which run the unique daemons : NameNode, 
SecondaryNameNode and ResourceManager
- the slave nodes are the nodes used for parallel computations. They each run a 
DataNode and a NodeManager.

Each manager provides a web console for observing what's happening.
You can observed 
- block distribution in HDFS at http://<masternode>:9870
- job executions at http://<masternode>:8088
- job history at http://<masternode>:19888


