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ABSTRACT 
The Java system supports the transmission of code via dynamic 
class loading, and the transmission or storage of data via object 
serialization. However, Java does not provide any mechanism for 
the transmission/storage of computation (i.e., thread 
serialization). Several projects have recently addressed the issue 
of Java thread serialization, e.g., Sumatra, Wasp, JavaGo, Brakes, 
Merpati. But none of them has been able to avoid the overhead 
incurred by thread serialization on thread performance. We 
propose a Java thread serialization mechanism that does not 
impose any performance overhead on serialized threads. In this 
paper, we describe our implementation of thread serialization in 
Sun Microsystems’ JVM, and present the techniques that allowed 
us to cancel the performance overhead, namely type inference and 
dynamic de-optimization. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Contructs and 
Features – abstract data types, polymorphism, control structures.  

D.3.4 [Programming Languages]: Processors – Compilers, 
Interpreters, Run-time environments. 

D.4.1 [Operating Systems]: Process Management – Threads. 

D.4.5 [Operating Systems]: Reliability – Checkpoint/restart. 

D.2.2 [Software Engineering]: Design Tools and Techniques – 
Software libraries. 

General Terms 
Performance, Design, Experimentation, Languages. 

Keywords 
Mobility, persistence, checkpoint/restart, type inference, dynamic 
de-optimization, performance, threads, JVM. 

1. INTRODUCTION 
In JDK 1.0, the Java system supports the transmission of code via 

dynamic class loading. In JDK 1.1, Java allows data to be 
transmitted or stored thanks to object serialization. These 
mechanisms enable a computation to be started at new hosts, with 
an initial state, but always starting at the same point in the 
computation (i.e., the beginning of the computation). However, if 
we need to resume a computation at the point at which it was 
prior to transmission/storage, we need to transmit/store the state 
of the execution (i.e., thread) as well. Java thread serialization 
consists of capturing the current execution state of a Java thread 
for the purposes of transmission or storage, and thread de-
serialization is the complementary process of restoring the 
execution state of a thread. Java thread serialization/de-
serialization (hereafter referred to as “thread serialization”) has 
many applications in the areas of persistence and mobility, such 
as checkpointing and recovery for fault tolerance purpose, mobile 
agent platforms, dynamic reconfiguration of distributed 
applications, administration of distributed systems, dynamic load 
balancing and user nomadism in mobile computing environments. 

We designed and implemented a Java thread serialization 
mechanism that is used to build thread mobility or thread 
persistence. Therefore, a running Java thread can, at an arbitrary 
state of its execution, migrate to a remote machine where it 
resumes its execution, or be checkpointed on disk for possible 
subsequent recovery. With our services, migrating a thread is 
simply performed by the call of our go primitive, and 
checkpointing/recovering a thread is performed by the call of our 
store and load primitives1. 

In this paper, we propose a thread serialization mechanism that 
does not affect the “normal” performance of applications. Indeed, 
in some applications such as administration of distributed systems 
or dynamic reconfiguration of distributed systems, thread 
serialization is necessary but occurs rarely; it must therefore be 
overhead-free. The implementation of our zero-overhead Java 
thread serialization mechanism is mainly based on two 
techniques: (i) Type inference, and (ii) Dynamic de-optimization. 

2. RELATED WORK 
The main issue when building Java thread serialization is to 
access the thread's execution state, a state that is internal to the 
Java virtual machine (JVM) and not directly accessible to Java 
programmers. A possible solution is to extend the JVM with new 

                                                                 
1 Additional details about the API of our Java thread serialization 

mechanism an its use for mobility and persistence purposes are 
available from http://sardes.inrialpes.fr/research/JavaThread/ 
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mechanisms that capture a thread state in a serialized and portable 
form, and later restore a thread from its serialized state, 
e.g., Sumatra [1], Merpati [10], ITS [2] and CIA [6]. Another 
solution is based on a pre-processor that transforms thread’s 
application code prior to execution in order to add statements that 
follow thread’s execution and manage its state capture, 
e.g., Wasp [5], JavaGo [9], Brakes [11] and JavaGoX [8]. These 
Java thread serialization mechanisms are characterized by four 
properties: 

• The completeness of the accessed thread state. 

• The genericity of thread serialization: its ability to adapt to 
different uses, e.g., mobility, persistence. 

• The portability of the serialization mechanism across 
different Java platforms. 

• The efficiency of the mechanism, i.e., its impact on the 
performance of thread execution. 

Regarding the existing solutions, the thread serialization systems 
based on a JVM-level implementation verify the completeness 
requirement but lack in efficiency and portability. And the thread 
serialization systems proposed at the application level are portable 
but they are neither efficient nor complete. Furthermore, except 
Merpati and ITS, all the existing implementations propose Java 
thread serialization mechanisms that are restricted to thread 
mobility. Merpati allows Java threads to benefit from both 
mobility and persistence but it lacks in genericity because the 
proposed mobility/persistence services can not be adapted to 
applications' needs; while ITS proposes a generic implementation 
of Java thread serialization. 

3. JVM CHARACTERISTICS 
Three Java Virtual Machine’s characteristics are mainly necessary 
to understand the rest of the paper: the bytecode, execution 
engines (equivalent of hardware processors) and runtime data 
areas. 

Bytecode. The Java bytecode provides an instruction set that is 
very similar to the one of a hardware processor. Each instruction 
specifies the operation to be performed, the number of operands 
and the types of the operands manipulated by the instruction. For 
example, the iadd, ladd, fadd and dadd instructions respectively 
apply on two operands of type int, long, float and double, and 
return a result of the same type. The execution of bytecode in the 
JVM is based on a stack, called the operand stack. For example, 
before the invocation of the iadd instruction, two integer operands 
are pushed on the stack, and after the operation is completed, the 
integer result is left on top of the stack. 

Execution engine. The first generation of JVM was based on an 
interpreter which translates each bytecode instruction into the 
execution of native code. In order to improve performance, the 
second generation of JVM has integrated Java Just-In-Time (JIT) 
compilers, which compile Java methods into native code. The 
subsequent JVM’s execution engines perform much faster. 

Runtime data areas. The JVM’ data areas that describe the 
execution state of a Java thread are illustrated by Figure 1: 

• Java stack. A Java stack is associated with each thread in the 
JVM. A new frame is pushed onto the stack each time a Java 

method is invoked and popped from the stack when the 
method returns. A frame includes a table with the local 
variables of the associated method, and an operand stack that 
contains the partial results (operands) of the method. A frame 
also contains registers such as the program counter (pc) and 
the top of the stack. 

• Object heap. The heap of the JVM includes all the Java 
objects created during the lifetime of the JVM. The heap 
associated with a thread consists of all the objects used by 
the thread (objects accessible from the thread’s Java stack). 

• Method area. The method area of the JVM includes all the 
classes that have been loaded by the JVM. The method area 
associated with a thread contains the classes used by the 
thread (classes where some methods are referenced by the 
thread’s stack). 

In addition to the above data areas, a native stack is associated 
with a thread, in order to support native methods. A Java stack is 
used when the underlying execution engine is a Java interpreter; 
but when a Java method is JIT compiled, the invocation frame of 
this method is based on the native stack. 

4. OVERALL DESIGN 
Java thread serialization consists in interrupting the thread during 
its execution and extracting its current state. The extraction 
amounts to build a data structure (a Java object) containing all 
information necessary for restoring the Java stack, the heap and 
the method area associated with the thread. To build such a data 
structure, the Java stack associated with the thread is scanned in 
order to identify its current Java frames, the objects and classes 
that are referenced from the frames’ local variables and operand 
stack, and the bytecode index for each frame (i.e., a portable 
value of the pc). After thread serialization, the resulting data 
structure can be transmitted to another virtual machine in order to 
implement thread mobility or it can be stored on disk for 
persistence purposes. Symmetrically, Java thread de-serialization 
consists first in creating a new thread and initializing its state with 
a previously captured state. After that, the Java stack (Java 
frames, local variables, operand stacks, pc), the heap and the 
method area associated with the new thread are identical to those 
associated with the thread whose state was previously captured. 
Finally, the new thread is started, it resumes the execution of the 
previous thread. 
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Figure 1. Java thread state 



4.1 Objectives 
Our first objective was to provide a generic Java thread 
serialization mechanism which allows the programmer to adapt 
the serialization policy in order to meet applications' needs. 
Therefore, various high level services can be built, such as thread 
mobility or thread persistence. Another objective was to provide a 
complete thread serialization mechanism that takes into account 
the complete state of a Java thread. On the other hand, one of the 
first criticisms addressed to Java was its poor performance; 
therefore, an important effort was made by Java/JVM designers in 
terms of execution optimization which led to today’s efficient 
JVM. Consequently, for a new Java facility to be widely 
accepted, it must not degrade the performance of the applications 
which use it. Therefore, one of our main objectives has been to 
provide a thread serialization mechanism that does not impose any 
overhead on the execution of serialized threads. Finally, regarding 
the portability of the thread serialization mechanism, this property 
is, from our point of view, not the main issue. Our approach was 
to give ourselves the opportunity to propose a complete and 
efficient Java thread serialization system that would be widely 
used and could become a standard Java feature in future JVM 
implementations (as for RMI). 

4.2 Main issues and design choices 
Genericity. We propose a generic design of Java thread 
serialization thanks to which we are able to build several higher 
level services such as thread mobility and thread persistence. 
Indeed, the implementation of our thread mobility and thread 
persistence mechanisms is a combination of our Java thread 
serialization to standard Java mechanisms such as object 
serialization and dynamic class loading. 

Completeness. The state of Java threads is not entirely accessible 
by Java programs. For facing this problem, we extended the JVM 
in order to be able, on the one hand, to externalize the state of 
Java threads (for thread serialization), and on the other hand, to 
initialize a thread with a particular state (for thread de-
serialization). 

Portability of thread state. Unlike the heap and the method area 
that consist of information portable on heterogeneous 
architectures (thanks to Java object serialization and bytecode 
definition), the Java stack is implemented in most JVMs a as 
native data structure (C structure). The representation of the 
information contained in the Java stack depends on the underlying 
architecture. The thread serialization mechanism must translate 
this non portable data structure (C structure) to a portable data 
structure (Java object), and thread de-serialization must perform 
the symmetric process. Translating the Java stack into a portable 
data structure consists more precisely in translating the native 
values of local variables and partial results into Java values. This 
translation requires the knowledge of the types of the values. But 
the Java stack does not provide any information about the types of 
the values it contains: a four bytes word may represent a Java 
reference as well as an int value or a float value. Therefore, the 
main issue here is to infer the types of the data stored in the Java 
stack. 

The only place where these types are known is the bytecode of the 
methods that push the data on the stack. As explained in section 3, 
a bytecode instruction which pushes a value on a Java stack is 

typed and determines the type of this value. The simplest solution 
is thus to modify the Java interpreter in such a way that each time 
a bytecode instruction pushes a value on the stack, the type of this 
value is determined and stored “somewhere” (i.e., a type stack 
associated with the thread). But the drawback of this solution is 
that it introduces an important performance overhead on thread 
execution, since additional computation has to be performed in 
parallel with bytecode interpretation. In order to avoid any 
overhead, type inference must not be performed during thread 
execution but only at thread serialization time. We propose a 
solution in which the bytecode executed by the thread is analyzed 
with one pass, at thread serialization time. With this analysis, the 
type of the stacked data is retrieved and used to build the portable 
data structure that represents the thread's Java stack. Thus, the 
Java interpreter is kept unchanged and no performance overhead 
is incurred on the serialized thread. This approach is called CTS 
(Capture time-based Thread Serialization); it is detailed in 
section 5. 

Efficiency. In order to design Java thread serialization in such a 
way that it avoids any performance overhead, we followed two 
principles: (i) No additional computation is performed in parallel 
with bytecode interpretation, and (ii) Thread serialization is 
compatible with today's Java JIT compilation techniques. First, 
that means that everything is done at serialization time: by using a 
type inference technique applied at thread serialization time, as 
described in section 5. Moreover, regarding JIT-compatibility, the 
problem is to be able to perform thread serialization even if the 
thread's Java stack does not really reflect the current execution 
state of the thread. This is the case when some Java methods 
currently executed by the thread are JIT compiled (i.e., their 
execution is based on the threads' native stack and not on the Java 
stack). In order to face this problem, we propose to use a dynamic 
de-optimization technique as described in section 6. 

5. TYPE INFERENCE 
The type inference mechanism aims at building a type stack that 
reflects the types of the values (local variables and operands) 
contained in the thread's Java stack. Like the Java stack, the type 
stack consists of a succession of frames which we call type 
frames. A type frame on a type stack is associated with each Java 
frame on the Java stack. A type frame contains two main data 
structures: a table that describes the types of the local variables of 
the associated method and an operand type stack that gives the 
types of the partial results of the method. A thread’s type stack is 
built as follows. At serialization time, for each frame on the 
thread’s Java stack, the bytecode of the associated method is 
parsed from the beginning to the exit point of the method (pointed 
to by the Java frame’s pc and representing the last instruction 
executed in the method). Following this code path, the parsed 
bytecode instructions are analyzed and the types of the values 
they manipulate are inferred and stored in the type frame, either 
as local variable types or as operand types. 

The main problem when inferring the types occurs when several 
paths exist between the beginning of the method’s code and the 
method’s exit point; especially when different code paths may 
assume different types for a same item on the Java stack (local 
variable or operand). In this case, which path should be followed 
for type inference? Let us illustrate this problem through an 
example of a Java program represented by a Java source code, its 



equivalent bytecode and the associated execution flow graph (see 
Figure 2). In this program, the local variables i and j are declared 
in block 1 and represent values of type int, and the local variable k 
represents a value of type int in block 2 and of type float in 
block 3. This variable is implemented by the same entry in the 
local variable table of the Java frame (a variable at index 2, 
manipulated at lines 7 and 12 in the bytecode). How are the types 
of the local variables of the method m determined? When 
serializing the thread executing the method m, four cases are 
possible: 

1. The exit point (pc value) is in block 1. Thus, there is only 
one path from the beginning of the code to the exit point. 
The analysis of this path permits to determine that the local 
variable i is an int value thanks to the method signature, and 
the local variable j is an int value thanks to the instruction 
istore_1 at line 1 in the bytecode. 

2. If the exit point is in block 2, the only one path reaching that 
point is block 1-block 2. When analyzing this path, the 
variables i and j are recognized as being int values (as in the 
1st case) and the int type of the variable k is determined 
thanks to the instruction istore_2 at line 7 of the bytecode. 

3. In case the exit point is in block 3, there is only one path 
reaching that point: block 1-block 3. This case is similar to 
the second one; the only one difference is that path analysis 
recognizes the variable k as being a float value thanks to the 
instruction fstore_2 at line 12 of the bytecode. 

4. Finally, if the exit point is in block 4, then two paths exist: 
either block 1-block 2-block 4 or block 1-block 3-block 4. In 
this case, which code path should be followed for type 
inference? 

Our solution to this problem is based on two correctness 
properties of the Java bytecode [4]: 

Correctness properties:  
At any given point in the program, no matter what code path is 
taken to reach that point:  
P1: The operand stacks built by following each code path contain 
the same types.  
P2: The local variables built by following each code path are of 
the same types or are unused if the types differ. 
As a consequence of the P2 correctness property, following both 
paths block 1-block 2-block 4 or block 1-block 3-block 4, variable 
k is no more used and its type is undefined. And according to the 
P1 correctness property, an operand built following two different 
code paths has the same type. Thus, any of the possible code 
paths can be used for type inference. Thus, our algorithm 
determines the types of the values on a thread’s Java stack in one 
pass of the bytecode. This algorithm amounts to: (i) determining, 
for the code of each method currently executed by the thread, any 
code path starting from the beginning of the method’s code and 
reaching the method’s exit point (pc value), and (ii) inferring the 
types of the manipulated values from the bytecode instructions 
contained in this path. Finally, the type inference algorithm builds 
a type stack that reflects the types of the values on the thread's 
Java stack. The resulting type information is then used to capture 
the thread's Java stack in a portable form. 

6. DYNAMIC DE-OPTIMIZATION 
The type inference technique described in the previous section 
requires access to the thread’s Java stack. But the Java stack may 
sometimes not reflect the current execution state of the thread. 
Indeed, with Java JIT compilation, the execution of JIT compiled 
methods is no longer based on the thread’s Java stack but on the 
native stack. Thus, the issue is to permit thread serialization even 
in the presence of JIT compilation. That was one of our main 
objectives: not to trade Java applications performance for the 
implementation of thread serialization. 

 

 
 

 

Method void m(int) 
   0 iconst_3 
   1 istore_1 
   2 iload_0 
   3 ifne 11 
  
   6 iconst_1 
   7 istore_2 
   8 goto 13 
  
 11 fconst_2 
  12 fstore_2 
  
 13 iconst 4 
  14 istore_1 
 15 return 
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static void m(int i){   
  
   int j;   
   j = 3;   
   if (i == 0) {   
  
      int k;   
      k =  1;   
   } else {   
  
      float k;   
      k = 2;   
   }   
  
   j = 4;   
}   
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Sun Microsystems’ HotSpot virtual machine includes a 
mechanism which performs dynamic de-optimization. This 
mechanism transforms the native frames associated with JIT 
compiled methods into Java frames [7]. Dynamic de-optimization 
was first used in the Self's source-level debugging system; it 
shields the debugger from optimizations performed by the 
compiler by dynamically de-optimizing code on demand. This 
allows the programmer to debug his program at the source code-
level even in presence of compilation optimizations. In the 
HotSpot VM, dynamic de-optimization was introduced in order to 
deal with the inconsistency problem rising from the combination 
of method inlining performed by JIT compilation and dynamic 
class loading. Here, we use dynamic de-optimization in a thread 
serialization system. At serialization time, we invoke dynamic de-
optimization on the thread’s JIT compiled frames in order to 
retrieve the Java frames which would have been produced by the 
Java interpreter. Therefore, the type inference algorithm described 
in section 5 can be applied to these Java frames, and the thread 
can be serialized. It is important to notice here that if dynamic de-
optimization is used at thread serialization time, re-optimization 
must be used at thread de-serialization time in order not to trade 
thread performance. Finally, Java applications that use our thread 
serialization mechanism continue to benefit from JIT compilation, 
before and after serialization, i.e., they execute exactly in the 
same conditions as on an unmodified JVM. 

7. CONCLUSION 
Java provides most of the functions required to transmit the code 
(i.e., dynamic class loading), and to transmit or store data 
(i.e., object serialization). However, Java does not provide any 
mechanism for the transmission/storage of the computation 
(i.e., threads). We propose a generic thread serialization 
mechanism that we used as a basis for the implementation of 
thread mobility and thread persistence services. With these 
services, a running Java thread can, at an arbitrary state of its 
execution, migrate to a remote machine where resume its 
execution, or be checkpointed on disk and then recovered. 

We implemented the CTS (Capture-time Thread Serialization) 
thread serialization system within Sun Microsystems' Java Virtual 
Machine. The lessons learned from this experiment are: 

• It is possible to extend the Java Virtual Machine with thread 
serialization, mobility and persistence facilities without 
redesigning the whole JVM. 

• The proposed thread serialization/mobility/persistence 
mechanisms do not incur any performance overhead on 
threads. This was possible thanks to the use of two 
techniques: 

o A type inference technique which permits to build a 
thread serialization mechanism that is totally separated 
from the JVM interpreter and does therefore not impact 
bytecode interpretation. 

o A dynamic de-optimization technique which allows thread 
serialization to be compliant with Java JIT compilation. 

In this paper, we described our work towards the provision of 
basic mechanisms for an overhead-free Java thread 

serialization/mobility/persistence system. We restricted our 
discussion to the design and implementation issues in a local 
environment (i.e., a local JVM), and we did not discuss the 
problems rising from using our serialization facility to build large 
distributed systems, e.g., object sharing, synchronization, etc. 
Some elements of response are presented in [3], where the authors 
describe how they use our Java thread serialization mechanism for 
fault tolerance purpose, and how they built a checkpoint/restart 
facility for parallel computations in the Suma metacomputing 
system. Further experiments have to be conducted in order to 
evaluate the use of our thread serialization system to build large 
mobile distributed applications. 
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