
Efficient Java Thread Serialization
Sara Bouchenak

Swiss Federal Institute of Technology
IC / IIF / LABOS / INN 315

CH-1015 Lausanne, Switzerland
+41 (0)21 693 47 07

Sara.Bouchenak@epfl.ch

Daniel Hagimont
INRIA

655, av. de l’Europe, Montbonnot
38334 St-Ismier Cedex, France

+33 (0)4 76 61 52 62

Daniel.Hagimont@inria.fr

Noël De Palma
INPG

655, av. de l’Europe, Montbonnot
38334 St-Ismier Cedex, France

+33 (0)4 76 61 55 16

Noel.Depalma@imag.fr

ABSTRACT
The Java system supports the transmission of code via dynamic
class loading, and the transmission or storage of data via object
serialization. However, Java does not provide any mechanism for
the transmission/storage of computation (i.e., thread
serialization). Several projects have recently addressed the issue
of Java thread serialization, e.g., Sumatra, Wasp, JavaGo, Brakes,
Merpati. But none of them has been able to avoid the overhead
incurred by thread serialization on thread performance. We
propose a Java thread serialization mechanism that does not
impose any performance overhead on serialized threads. In this
paper, we describe our implementation of thread serialization in
Sun Microsystems’ JVM, and present the techniques that allowed
us to cancel the performance overhead, namely type inference and
dynamic de-optimization.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – abstract data types, polymorphism, control structures.

D.3.4 [Programming Languages]: Processors – Compilers,
Interpreters, Run-time environments.

D.4.1 [Operating Systems]: Process Management – Threads.

D.4.5 [Operating Systems]: Reliability – Checkpoint/restart.

D.2.2 [Software Engineering]: Design Tools and Techniques –
Software libraries.

General Terms
Performance, Design, Experimentation, Languages.

Keywords
Mobility, persistence, checkpoint/restart, type inference, dynamic
de-optimization, performance, threads, JVM.

1. INTRODUCTION
In JDK 1.0, the Java system supports the transmission of code via

dynamic class loading. In JDK 1.1, Java allows data to be
transmitted or stored thanks to object serialization. These
mechanisms enable a computation to be started at new hosts, with
an initial state, but always starting at the same point in the
computation (i.e., the beginning of the computation). However, if
we need to resume a computation at the point at which it was
prior to transmission/storage, we need to transmit/store the state
of the execution (i.e., thread) as well. Java thread serialization
consists of capturing the current execution state of a Java thread
for the purposes of transmission or storage, and thread de-
serialization is the complementary process of restoring the
execution state of a thread. Java thread serialization/de-
serialization (hereafter referred to as “thread serialization”) has
many applications in the areas of persistence and mobility, such
as checkpointing and recovery for fault tolerance purpose, mobile
agent platforms, dynamic reconfiguration of distributed
applications, administration of distributed systems, dynamic load
balancing and user nomadism in mobile computing environments.

We designed and implemented a Java thread serialization
mechanism that is used to build thread mobility or thread
persistence. Therefore, a running Java thread can, at an arbitrary
state of its execution, migrate to a remote machine where it
resumes its execution, or be checkpointed on disk for possible
subsequent recovery. With our services, migrating a thread is
simply performed by the call of our go primitive, and
checkpointing/recovering a thread is performed by the call of our
store and load primitives1.

In this paper, we propose a thread serialization mechanism that
does not affect the “normal” performance of applications. Indeed,
in some applications such as administration of distributed systems
or dynamic reconfiguration of distributed systems, thread
serialization is necessary but occurs rarely; it must therefore be
overhead-free. The implementation of our zero-overhead Java
thread serialization mechanism is mainly based on two
techniques: (i) Type inference, and (ii) Dynamic de-optimization.

2. RELATED WORK
The main issue when building Java thread serialization is to
access the thread's execution state, a state that is internal to the
Java virtual machine (JVM) and not directly accessible to Java
programmers. A possible solution is to extend the JVM with new

1 Additional details about the API of our Java thread serialization

mechanism an its use for mobility and persistence purposes are
available from http://sardes.inrialpes.fr/research/JavaThread/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

mechanisms that capture a thread state in a serialized and portable
form, and later restore a thread from its serialized state,
e.g., Sumatra [1], Merpati [10], ITS [2] and CIA [6]. Another
solution is based on a pre-processor that transforms thread’s
application code prior to execution in order to add statements that
follow thread’s execution and manage its state capture,
e.g., Wasp [5], JavaGo [9], Brakes [11] and JavaGoX [8]. These
Java thread serialization mechanisms are characterized by four
properties:

• The completeness of the accessed thread state.

• The genericity of thread serialization: its ability to adapt to
different uses, e.g., mobility, persistence.

• The portability of the serialization mechanism across
different Java platforms.

• The efficiency of the mechanism, i.e., its impact on the
performance of thread execution.

Regarding the existing solutions, the thread serialization systems
based on a JVM-level implementation verify the completeness
requirement but lack in efficiency and portability. And the thread
serialization systems proposed at the application level are portable
but they are neither efficient nor complete. Furthermore, except
Merpati and ITS, all the existing implementations propose Java
thread serialization mechanisms that are restricted to thread
mobility. Merpati allows Java threads to benefit from both
mobility and persistence but it lacks in genericity because the
proposed mobility/persistence services can not be adapted to
applications' needs; while ITS proposes a generic implementation
of Java thread serialization.

3. JVM CHARACTERISTICS
Three Java Virtual Machine’s characteristics are mainly necessary
to understand the rest of the paper: the bytecode, execution
engines (equivalent of hardware processors) and runtime data
areas.

Bytecode. The Java bytecode provides an instruction set that is
very similar to the one of a hardware processor. Each instruction
specifies the operation to be performed, the number of operands
and the types of the operands manipulated by the instruction. For
example, the iadd, ladd, fadd and dadd instructions respectively
apply on two operands of type int, long, float and double, and
return a result of the same type. The execution of bytecode in the
JVM is based on a stack, called the operand stack. For example,
before the invocation of the iadd instruction, two integer operands
are pushed on the stack, and after the operation is completed, the
integer result is left on top of the stack.

Execution engine. The first generation of JVM was based on an
interpreter which translates each bytecode instruction into the
execution of native code. In order to improve performance, the
second generation of JVM has integrated Java Just-In-Time (JIT)
compilers, which compile Java methods into native code. The
subsequent JVM’s execution engines perform much faster.

Runtime data areas. The JVM’ data areas that describe the
execution state of a Java thread are illustrated by Figure 1:

• Java stack. A Java stack is associated with each thread in the
JVM. A new frame is pushed onto the stack each time a Java

method is invoked and popped from the stack when the
method returns. A frame includes a table with the local
variables of the associated method, and an operand stack that
contains the partial results (operands) of the method. A frame
also contains registers such as the program counter (pc) and
the top of the stack.

• Object heap. The heap of the JVM includes all the Java
objects created during the lifetime of the JVM. The heap
associated with a thread consists of all the objects used by
the thread (objects accessible from the thread’s Java stack).

• Method area. The method area of the JVM includes all the
classes that have been loaded by the JVM. The method area
associated with a thread contains the classes used by the
thread (classes where some methods are referenced by the
thread’s stack).

In addition to the above data areas, a native stack is associated
with a thread, in order to support native methods. A Java stack is
used when the underlying execution engine is a Java interpreter;
but when a Java method is JIT compiled, the invocation frame of
this method is based on the native stack.

4. OVERALL DESIGN
Java thread serialization consists in interrupting the thread during
its execution and extracting its current state. The extraction
amounts to build a data structure (a Java object) containing all
information necessary for restoring the Java stack, the heap and
the method area associated with the thread. To build such a data
structure, the Java stack associated with the thread is scanned in
order to identify its current Java frames, the objects and classes
that are referenced from the frames’ local variables and operand
stack, and the bytecode index for each frame (i.e., a portable
value of the pc). After thread serialization, the resulting data
structure can be transmitted to another virtual machine in order to
implement thread mobility or it can be stored on disk for
persistence purposes. Symmetrically, Java thread de-serialization
consists first in creating a new thread and initializing its state with
a previously captured state. After that, the Java stack (Java
frames, local variables, operand stacks, pc), the heap and the
method area associated with the new thread are identical to those
associated with the thread whose state was previously captured.
Finally, the new thread is started, it resumes the execution of the
previous thread.

Class
reference Object

reference

Java stack Object heap Method area

variable 1

variable n

pc

operand 1

operand m

Frame

Java stack

operand stack

local variables

Figure 1. Java thread state

4.1 Objectives
Our first objective was to provide a generic Java thread
serialization mechanism which allows the programmer to adapt
the serialization policy in order to meet applications' needs.
Therefore, various high level services can be built, such as thread
mobility or thread persistence. Another objective was to provide a
complete thread serialization mechanism that takes into account
the complete state of a Java thread. On the other hand, one of the
first criticisms addressed to Java was its poor performance;
therefore, an important effort was made by Java/JVM designers in
terms of execution optimization which led to today’s efficient
JVM. Consequently, for a new Java facility to be widely
accepted, it must not degrade the performance of the applications
which use it. Therefore, one of our main objectives has been to
provide a thread serialization mechanism that does not impose any
overhead on the execution of serialized threads. Finally, regarding
the portability of the thread serialization mechanism, this property
is, from our point of view, not the main issue. Our approach was
to give ourselves the opportunity to propose a complete and
efficient Java thread serialization system that would be widely
used and could become a standard Java feature in future JVM
implementations (as for RMI).

4.2 Main issues and design choices
Genericity. We propose a generic design of Java thread
serialization thanks to which we are able to build several higher
level services such as thread mobility and thread persistence.
Indeed, the implementation of our thread mobility and thread
persistence mechanisms is a combination of our Java thread
serialization to standard Java mechanisms such as object
serialization and dynamic class loading.

Completeness. The state of Java threads is not entirely accessible
by Java programs. For facing this problem, we extended the JVM
in order to be able, on the one hand, to externalize the state of
Java threads (for thread serialization), and on the other hand, to
initialize a thread with a particular state (for thread de-
serialization).

Portability of thread state. Unlike the heap and the method area
that consist of information portable on heterogeneous
architectures (thanks to Java object serialization and bytecode
definition), the Java stack is implemented in most JVMs a as
native data structure (C structure). The representation of the
information contained in the Java stack depends on the underlying
architecture. The thread serialization mechanism must translate
this non portable data structure (C structure) to a portable data
structure (Java object), and thread de-serialization must perform
the symmetric process. Translating the Java stack into a portable
data structure consists more precisely in translating the native
values of local variables and partial results into Java values. This
translation requires the knowledge of the types of the values. But
the Java stack does not provide any information about the types of
the values it contains: a four bytes word may represent a Java
reference as well as an int value or a float value. Therefore, the
main issue here is to infer the types of the data stored in the Java
stack.

The only place where these types are known is the bytecode of the
methods that push the data on the stack. As explained in section 3,
a bytecode instruction which pushes a value on a Java stack is

typed and determines the type of this value. The simplest solution
is thus to modify the Java interpreter in such a way that each time
a bytecode instruction pushes a value on the stack, the type of this
value is determined and stored “somewhere” (i.e., a type stack
associated with the thread). But the drawback of this solution is
that it introduces an important performance overhead on thread
execution, since additional computation has to be performed in
parallel with bytecode interpretation. In order to avoid any
overhead, type inference must not be performed during thread
execution but only at thread serialization time. We propose a
solution in which the bytecode executed by the thread is analyzed
with one pass, at thread serialization time. With this analysis, the
type of the stacked data is retrieved and used to build the portable
data structure that represents the thread's Java stack. Thus, the
Java interpreter is kept unchanged and no performance overhead
is incurred on the serialized thread. This approach is called CTS
(Capture time-based Thread Serialization); it is detailed in
section 5.

Efficiency. In order to design Java thread serialization in such a
way that it avoids any performance overhead, we followed two
principles: (i) No additional computation is performed in parallel
with bytecode interpretation, and (ii) Thread serialization is
compatible with today's Java JIT compilation techniques. First,
that means that everything is done at serialization time: by using a
type inference technique applied at thread serialization time, as
described in section 5. Moreover, regarding JIT-compatibility, the
problem is to be able to perform thread serialization even if the
thread's Java stack does not really reflect the current execution
state of the thread. This is the case when some Java methods
currently executed by the thread are JIT compiled (i.e., their
execution is based on the threads' native stack and not on the Java
stack). In order to face this problem, we propose to use a dynamic
de-optimization technique as described in section 6.

5. TYPE INFERENCE
The type inference mechanism aims at building a type stack that
reflects the types of the values (local variables and operands)
contained in the thread's Java stack. Like the Java stack, the type
stack consists of a succession of frames which we call type
frames. A type frame on a type stack is associated with each Java
frame on the Java stack. A type frame contains two main data
structures: a table that describes the types of the local variables of
the associated method and an operand type stack that gives the
types of the partial results of the method. A thread’s type stack is
built as follows. At serialization time, for each frame on the
thread’s Java stack, the bytecode of the associated method is
parsed from the beginning to the exit point of the method (pointed
to by the Java frame’s pc and representing the last instruction
executed in the method). Following this code path, the parsed
bytecode instructions are analyzed and the types of the values
they manipulate are inferred and stored in the type frame, either
as local variable types or as operand types.

The main problem when inferring the types occurs when several
paths exist between the beginning of the method’s code and the
method’s exit point; especially when different code paths may
assume different types for a same item on the Java stack (local
variable or operand). In this case, which path should be followed
for type inference? Let us illustrate this problem through an
example of a Java program represented by a Java source code, its

equivalent bytecode and the associated execution flow graph (see
Figure 2). In this program, the local variables i and j are declared
in block 1 and represent values of type int, and the local variable k
represents a value of type int in block 2 and of type float in
block 3. This variable is implemented by the same entry in the
local variable table of the Java frame (a variable at index 2,
manipulated at lines 7 and 12 in the bytecode). How are the types
of the local variables of the method m determined? When
serializing the thread executing the method m, four cases are
possible:

1. The exit point (pc value) is in block 1. Thus, there is only
one path from the beginning of the code to the exit point.
The analysis of this path permits to determine that the local
variable i is an int value thanks to the method signature, and
the local variable j is an int value thanks to the instruction
istore_1 at line 1 in the bytecode.

2. If the exit point is in block 2, the only one path reaching that
point is block 1-block 2. When analyzing this path, the
variables i and j are recognized as being int values (as in the
1st case) and the int type of the variable k is determined
thanks to the instruction istore_2 at line 7 of the bytecode.

3. In case the exit point is in block 3, there is only one path
reaching that point: block 1-block 3. This case is similar to
the second one; the only one difference is that path analysis
recognizes the variable k as being a float value thanks to the
instruction fstore_2 at line 12 of the bytecode.

4. Finally, if the exit point is in block 4, then two paths exist:
either block 1-block 2-block 4 or block 1-block 3-block 4. In
this case, which code path should be followed for type
inference?

Our solution to this problem is based on two correctness
properties of the Java bytecode [4]:

Correctness properties:
At any given point in the program, no matter what code path is
taken to reach that point:
P1: The operand stacks built by following each code path contain
the same types.
P2: The local variables built by following each code path are of
the same types or are unused if the types differ.
As a consequence of the P2 correctness property, following both
paths block 1-block 2-block 4 or block 1-block 3-block 4, variable
k is no more used and its type is undefined. And according to the
P1 correctness property, an operand built following two different
code paths has the same type. Thus, any of the possible code
paths can be used for type inference. Thus, our algorithm
determines the types of the values on a thread’s Java stack in one
pass of the bytecode. This algorithm amounts to: (i) determining,
for the code of each method currently executed by the thread, any
code path starting from the beginning of the method’s code and
reaching the method’s exit point (pc value), and (ii) inferring the
types of the manipulated values from the bytecode instructions
contained in this path. Finally, the type inference algorithm builds
a type stack that reflects the types of the values on the thread's
Java stack. The resulting type information is then used to capture
the thread's Java stack in a portable form.

6. DYNAMIC DE-OPTIMIZATION
The type inference technique described in the previous section
requires access to the thread’s Java stack. But the Java stack may
sometimes not reflect the current execution state of the thread.
Indeed, with Java JIT compilation, the execution of JIT compiled
methods is no longer based on the thread’s Java stack but on the
native stack. Thus, the issue is to permit thread serialization even
in the presence of JIT compilation. That was one of our main
objectives: not to trade Java applications performance for the
implementation of thread serialization.

Method void m(int)
 0 iconst_3
 1 istore_1
 2 iload_0
 3 ifne 11

 6 iconst_1
 7 istore_2
 8 goto 13

 11 fconst_2
 12 fstore_2

 13 iconst 4
 14 istore_1
 15 return

Block 4

Block 3

Block 2

Block 1

static void m(int i){

 int j;
 j = 3;
 if (i == 0) {

 int k;
 k = 1;
 } else {

 float k;
 k = 2;
 }

 j = 4;
}

Block 1

Block 2

Block 3

Block 4

Java source code Bytecode

iconst_1

istore_1

iload_0

ifne 11

iconst_1

istore_2

goto 13

fconst_2

fstore_2

iconst_4

istore_1

return

Block 1

Block 3
Block 2

Block 4

Execution flow graph

Figure 2. Example of bytecode execution

j is int

k is int

k is float

k
j
i

2
1
0

Local variables
of m

Sun Microsystems’ HotSpot virtual machine includes a
mechanism which performs dynamic de-optimization. This
mechanism transforms the native frames associated with JIT
compiled methods into Java frames [7]. Dynamic de-optimization
was first used in the Self's source-level debugging system; it
shields the debugger from optimizations performed by the
compiler by dynamically de-optimizing code on demand. This
allows the programmer to debug his program at the source code-
level even in presence of compilation optimizations. In the
HotSpot VM, dynamic de-optimization was introduced in order to
deal with the inconsistency problem rising from the combination
of method inlining performed by JIT compilation and dynamic
class loading. Here, we use dynamic de-optimization in a thread
serialization system. At serialization time, we invoke dynamic de-
optimization on the thread’s JIT compiled frames in order to
retrieve the Java frames which would have been produced by the
Java interpreter. Therefore, the type inference algorithm described
in section 5 can be applied to these Java frames, and the thread
can be serialized. It is important to notice here that if dynamic de-
optimization is used at thread serialization time, re-optimization
must be used at thread de-serialization time in order not to trade
thread performance. Finally, Java applications that use our thread
serialization mechanism continue to benefit from JIT compilation,
before and after serialization, i.e., they execute exactly in the
same conditions as on an unmodified JVM.

7. CONCLUSION
Java provides most of the functions required to transmit the code
(i.e., dynamic class loading), and to transmit or store data
(i.e., object serialization). However, Java does not provide any
mechanism for the transmission/storage of the computation
(i.e., threads). We propose a generic thread serialization
mechanism that we used as a basis for the implementation of
thread mobility and thread persistence services. With these
services, a running Java thread can, at an arbitrary state of its
execution, migrate to a remote machine where resume its
execution, or be checkpointed on disk and then recovered.

We implemented the CTS (Capture-time Thread Serialization)
thread serialization system within Sun Microsystems' Java Virtual
Machine. The lessons learned from this experiment are:

• It is possible to extend the Java Virtual Machine with thread
serialization, mobility and persistence facilities without
redesigning the whole JVM.

• The proposed thread serialization/mobility/persistence
mechanisms do not incur any performance overhead on
threads. This was possible thanks to the use of two
techniques:

o A type inference technique which permits to build a
thread serialization mechanism that is totally separated
from the JVM interpreter and does therefore not impact
bytecode interpretation.

o A dynamic de-optimization technique which allows thread
serialization to be compliant with Java JIT compilation.

In this paper, we described our work towards the provision of
basic mechanisms for an overhead-free Java thread

serialization/mobility/persistence system. We restricted our
discussion to the design and implementation issues in a local
environment (i.e., a local JVM), and we did not discuss the
problems rising from using our serialization facility to build large
distributed systems, e.g., object sharing, synchronization, etc.
Some elements of response are presented in [3], where the authors
describe how they use our Java thread serialization mechanism for
fault tolerance purpose, and how they built a checkpoint/restart
facility for parallel computations in the Suma metacomputing
system. Further experiments have to be conducted in order to
evaluate the use of our thread serialization system to build large
mobile distributed applications.

8. REFERENCES
[1] Acharya, A., Ranganathan, M., and Salz, J. Sumatra: A

Language for Resource-aware Mobile Programs. 2nd
International Workshop on Mobile Object Systems
(MOS’96), Linz, Austria, Jul. 1996.

[2] Bouchenak, S. Mobility and Persistence of Applications in
the Java Environment. Ph. D. Thesis, French National
Polytechnic Institute of Grenoble (INPG), France, Oct. 2001.

[3] Cardinale, Y., Hernández, E. Checkpointing Facility on a
Metasystem. European Conference on Parallel Computing
(Euro-Par’2001), Manchester, UK, Jan. 2001.

[4] Engel, J. Programming for the Java Virtual Machine.
Addison Wesley, 1999.

[5] Fünfrocken, S. Transparent Migration of Java-based Mobile
Agents (Capturing and Reestablishing the State of Java
Programs). 2nd International Workshop Mobile Agents 98
(MA’98), Stuttgart, Germany, Sep. 1998.

[6] Illmann, T., Krueger, T., Kargl F., Weber, M. Transparent
Migration of Mobile Agents Using the Java Debugger
Architecture. 5th IEEE Int. Conference on Mobile Agents
(MA’2001), Atlanta, GA, USA, Dec. 2001.

[7] Meloan, S. The Java HotSpot Performance Engine: An In-
Depth Look. Sun Microsystems, Jun. 1999.

[8] Sakamoto, T., Sekiguchi, T., and Yonezawa, A. Bytecode
Transformation for Portable Thread Migration in Java. 4th
Int. Symposium on Mobile Agents 2000 (MA’2000), Zürich,
Switzerland, Sep. 2000.

[9] Sekiguchi, T., Masuhara, H., Yonezawa, A. A Simple
Extension of Java Language for Controllable Transparent
Migration and its Portable Implementation. 3rd Int.
Conference on Coordination Models and Languages,
Amsterdam, The Netherlands, Apr. 1999.

[10] Suezawa, T. Persistent Execution State of a Java Virtual
Machine. ACM Java Grande 2000 Conference, San
Francisco, CA, USA, Jun. 2000.

[11] Truyen, E., Robben, B., Vanhaute, B., Coninx, T., Joosen,
W., and Verbaeten, P. Portable Support for Transparent
Thread Migration in Java. 4th International Symposium on
Mobile Agents 2000 (MA’2000), Zürich, Switzerland, Sep.
2000.

